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ABSTRACT
CILoS is an indoor localization system based on CDMA mo-
bile phone signal fingerprinting. CDMA networks vary their
transmission power to accommodate fluctuations in network
load. This affects signal intensity and therefore limits the
practicality of traditional fingerprinting approaches based on
receiver signal strength (RSSI) measurements. Instead, CI-
LoS uses fingerprints of signal delay that are robust to cell
resizing. We demonstrate that CILoS achieves a median ac-
curacy of 5 meters, and compares favourably to RSSI finger-
printing systems. We highlight the significance of wide fin-
gerprints, constructed through scanning multiple channels,
for achieving high localization accuracy. We also show that
our system can accurately differentiate between floors of a
multifloor building.
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INTRODUCTION
This paper presents CILoS, a novel indoor localization sys-
tem based on the CDMA mobile phone system. CDMA
is one of the two most popular mobile phone systems in
use today with an estimated 431 million subscribers in 99
countries around the world [23]. The key advantage of our
approach is that it leverages the phone’s existing hardware
and can provide location estimates anywhere CDMA cellu-
lar service is available. This system can provide a localiza-
tion service in places where GPS does not work well, such
as in indoor environments or in urban canyons. Accurate in-
door localization is important in the context of emergency
response [24], as well as other emerging applications, such
as location aware advertising and gaming [25].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UbiComp’08, September 21-24, 2008, Seoul, Korea.
Copyright 2008 ACM 978-1-60558-136-1/08/09...$5.00.

CILoS is based on signal fingerprinting, an empirical local-
ization technique that involves atraining or mappingphase
in which a radio map of the environment is constructed by
collecting a series of fingerprints in multiple locations. Ara-
dio fingerprint captures a certain property of a group of radio
sources heard at a specific location. After performing a train-
ing phase, CILoS can help a client determine its location by
searching for the closest matches of the current measurement
to the set of measurements collected in the training phase.

CILoS is different from previous fingerprinting systems,
such as the ones using 802.11 [2] and GSM [18], because
it is based on signal delay rather than the receiver signal
strength (RSSI). While 802.11 and GSM networks operate
with fixed cell sizes, CDMA has a dynamic architecture that
supports the frequent reconfiguration of cell-sizes to accom-
modate fluctuations in network load. Cell resizing affects
the power at which beacons are transmitted; this alters the
intensity at which signals are perceived at a given location
and severely limits the practicality of RSSI fingerprinting.
Instead, transmissions from CDMA towers are tightly syn-
chronized with each other making it possible to construct
fingerprints that capture the relative time difference at which
signals emanating from different base stations are heard ata
given location. We show that fingerprints of signal delay are
stable even in the face of changes in beacon transmit power
such as when cell sizes change.

Experiments conducted on two multi-floor buildings in the
Toronto metropolitan area show that CILoS achieves a me-
dian accuracy of 5 meters and succeeds in detecting the cur-
rent floor 90% of the time. This performance is compara-
ble to systems based on 802.11 and GSM. We demonstrate
that the key to high accuracy is the use of wide fingerprints.
While this finding is consistent with previously reported re-
sults for GSM [15], our experience with CDMA indicates
that obtaining these wide fingerprints requires scanning of
multiple frequency bands from the same or different oper-
ators, as interference from nearby base stations limits the
number of neighbouring nodes that can be heard.

The rest of this paper is organized as follows. The follow-
ing section provides a brief introduction into the technolog-
ical aspects of CDMA that are relevant to radio fingerprint-
ing. The data collection section describes the process we
followed to collect our experimental data and the special
modem we used. This is followed by a description of our
localization algorithms. The evaluation section presentsthe
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results of our experiments. Finally, the related work section
compares our work with previous efforts in indoor localiza-
tion in general and in signal fingerprinting in particular, and
the conclusion summarizes our findings.

CDMA PRIMER
The Code Division Multiple Access (CDMA) mobile phone
system was first introduced in1995. Today 248 CDMA
commercial operators provide third-generation (3G) services
to 431 million customers in99 countries [23]. CDMA is a
spread spectrum technique in which all base stations owned
by one operator share the same spectral bandwidth. To avoid
interference, the transmissions from base stations and from
mobile hosts are encoded with orthogonal pseudo-random
codes.

To enable mobiles to meaningfully compare nearby base sta-
tions, all base stations participate in the transmission ofa pi-
lot signal. It is this pilot signal that we will use for radio
fingerprinting. The pilot signal consists of a pseudo-random
sequence of32768 chips, or symbols as illustrated in Fig-
ure 1. Each base station is assigned a unique64 chip range of
the pilot sequence, known as the PN offset, for a total of512
individual offsets assigned to as many base stations. The PN
offset uniquely identifies a base station within a CDMA de-
ployment. The pilot signal is transmitted continuously with
the different base stations taking turns to transmit their por-
tion of the sequence. This requires all the base stations to
be highly synchronized to a common timing reference, also
called system time. This timing reference is achieved using
GPS.

A mobile that monitors the pilot signal can determine three
key properties that are useful for signal fingerprinting: Ec,
Ec/Io, and the PN delay. Ec measures the signal strength
of an individual base station’s pilot expressed in dBm, and
Ec/Io is the power in an individual base station’s pilot di-
vided by the total power in the channel expressed in dB.
The PN delay measures the difference between the expected
and the actual arrival time of the pilot signal. To get around
the requirement for tight synchronization between the mo-
bile and the base stations, the PN delays are calculated rela-
tive to a reference base station. The mobile selects one base
station (e.g., the one with strongest signal) as its timing ref-
erence setting its clock with the arrival of its pilot (i.e.,set
the PN delay for the reference base station to zero). Because
all base station transmissions are tightly synchronized, the
mobile can then determine when it expects to hear the pilot
transmissions from other base stations based on their PN off-
set. For example, if the mobile uses as its time reference base
station with PN offset equal to ten (PN 10), it can expect that
the pilot from base station with PN 20 will arrive 640 chips
later. The mobile determines the PN delay for base stations
by comparing the actual and expected arrival time of their
pilots.

Later in the paper we will show that due to the practice of re-
configuring cell-sizes in CDMA networks to accommodate
fluctuation in network load, pilot Ec is not an appropriate

property for signal fingerprinting. In contrast, we will show
that PN delay is amenable to fingerprinting.

PN delay has been used in CDMA networks to determine lo-
calization by means of Time Difference of Arrival (TDOA)
trilateration [6]. TDOA accuracy, however is low, ranging
between 50 and 500 meters depending on interference, sys-
tem geometry and multipath effects.

DATA COLLECTION
Our experimental setup consisted of a Dell laptop running
Windows XP connected to a Condor CDMA scanner via a
serial port (see Figure 2). Condor is a dual band PN scanner
that can scan both the PCS and Cellular bands and supports
CDMAOne and CDMA2000. Condor can measure all the
512 pilots in less than a second and reports Ec, Ec/Io and sig-
nal delay for each pilot. The laptop was running the Condor
Data Logger software that communicates with Condor and
logs the binary data provided by it. Offline processing of the
binary data requires specialized software that understands
the binary format of files produced by the Condor Data Log-
ger. For this we used BVS Chameleon, a data conversion and
filtering tool for CDMA receivers. The result of offline pro-
cessing is a single file for each channel containing tuples of
the form (x-coordinate,y-coordinate BS1=[delay,Ec,Ec/Io]
BS2=[delay,Ec,Ec/Io]. . . , BSn=[delay,Ec,Ec/Io]).

We collected measurements during normal business hours in
two university buildings: the Bahen Centre for Information
Technology at the St. George campus and the South Build-
ing at the Mississauga campus. These building are located
in geographical regions that differ widely in their network
coverage characteristics. The Bahen Centre for Information
Technology is located in a busy downtown while the South
Building is located in a suburb. In the rest of this paper we
refer to these buildings as Downtown and Suburb, respec-
tively.

Downtown, is a modern8-storey building with dimensions
of 88m × 113m per floor and has good cellular coverage.
The building is home to lecture rooms, labs and offices. We
collected fingerprints on the5th and7th floors of Downtown.
Limited access to6th floor forced us to skip this floor. Sub-
urb is an old 5-storey building. While this is a very large
building, we limited our data collection to a66m× 48m re-
gion. Suburb is home to labs and faculty offices. The cellular
coverage in the building was poor and we noticed no recep-
tion at numerous locations on each floor. We collected fin-
gerprints on all floors of Suburb except the basement which
had no coverage. For practical considerations all the finger-
prints were collected in the hallways of both buildings.

To find active CDMA networks we scanned both the PCS
and Cellular bands. We found6 frequency bands in Down-
town and4 frequency bands in Suburb used by the two cel-
lular operators that provide CDMA service in the Toronto
metropolitan area. We will be using OP1 and OP2 through-
out the paper to distinguish between these two operators.
Each frequency band or channel occupies1.25 MHz of spec-
tral bandwidth. OP1 uses4 channels in Downtown and3
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Figure 1. PN offsets in CDMA.

Figure 2. Experimental setup.

channels in Suburb. OP2, on the other hand, uses2 channels
in Downtown and only1 channel in Suburb. The channels
of OP1 operate on1946.25, 1947.50, 1948.75, and1981.25
MHz frequencies in Downtown and1946.25, 1947.50, and
1948.75 MHz frequencies in Suburb. OP2’s channels, on
the other hand, use1955.0, and1957.50 MHz frequencies
in Downtown and1957.50 MHz frequency in Suburb. More
channels are used in Downtown to increase the system ca-
pacity and provide better service to the denser user popula-
tion found in this area.

Table 1 summarizes the number of fingerprints collected per
floor for each building. In both buildings we collected finger-
prints at locations chosen2 meters apart. In each location we
collected 120 measurements per available channel. The rea-
son for collecting multiple measurements per location will
be discussed later in the paper. Although we fingerprinted
more floors in Suburb than in Downtown, we have collected
fewer fingerprints in Suburb due to its smaller size and fewer
available channels.

CDMA FINGERPRINTING
Radio fingerprinting requires that the radio signal character-
istics that are been recorded vary from one location to an-
other (i.e., have high spatial variation) while remaining con-
stant over time at any single location (i.e., have low temporal
variation). GSM localization schemes use signal strength to
fingerprint an environment because the strength of GSM sig-
nals have high spatial and low temporal variations. However,

as we presented in our background section, CDMA base sta-
tions vary the power of their signal dynamically to support
cell resizing. This is likely to make signal strength have high
temporal variation, making it unsuitable for use as a finger-
print.

We verified this assertion by conducting the following ex-
periment. We recorded the signal strength of the same
CDMA base station at one single location continuously for
two hours. We repeated this experiment on four different
days. Figure 3 shows the signal strength recorded for each
of our four experiments. For each experiment, the signal
strength varied over the course of one experiment by as much
as 15dB. Even worse, each of the four experiments showed
different signal strength characteristics. These experiments
confirmed our intuition that signal strength was an unsuit-
able radio characteristic for fingerprinting using CDMA.

Instead, we focused on a different radio characteristic – the
signal delay. As we described in the background section, a
CDMA base station transmits at predefined time intervals.
In fact, CDMA base stations use highly accurate clocks to
synchronize their signal transmission. In turn, this leadsto a
CDMA signal whose signal delay does not vary over time.

We verified whether the signal delay is a suitable metric for
fingerprinting by measuring its temporal and spatial varia-
tion. To verify this we used the data from above experiments
conducted to show temporal variations of signal strength. In
addition to recording the signal strength, we also measured
the signal delay of multiple base stations in these experi-
ments. Figure 4 plots the signal delay measurements for
each of our four experiments. The signal delay metric ap-
pears very stable within one experiment and also across dif-
ferent experiments although occasional erroneous readings
do occur.

We eliminate these bad readings with a simple two-step fil-
tering technique. In the first step, we remove all readings
with very low signal-to-noise ratio. As we described in the
background section, Ec/Io is a common metric for CDMA
to measure the signal-to-noise ratio; we filter out all read-
ings whose Ec/Io is lower than -21dB. In the second step, we
remove all spurious errors using a simple windowing tech-
nique. At each location, we take several consecutive mea-
surements of signal delay over a short time interval. We then
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Downtown Suburb
5th Floor 7th Floor 2th Floor 3th Floor 4th Floor 5th Floor

per floor 732 786 248 400 248 248
per building 1518 1144

Table 1. The number of fingerprints collected for two buildings.

record the most common value out of these measurements
(i.e., themode) as the reading for a particular location. We
will present an in-depth sensitivity analysis of our two-step
filtering technique in the evaluation section.

Figure 5 shows the effects of our filtering technique on our
four experiments. The signal delay readings remain very sta-
ble over time for the same location over the course of all the
experiments.

In addition to low temporal variation, the signal delay met-
ric must have high spatial variation to be a suitable metric
for fingerprinting. To verify this, we measured the signal de-
lay in 10 different locations chosen two meters apart. All
these measurements were collected on one floor in Down-
town. Figure 6 shows the signal delays of six base stations
(i.e., the fingerprint) at each of these 10 locations. While
one base station can have the same signal delay at different
locations, when combined, all six base stations form unique
fingerprints at each of the 10 locations. These experiments
show that signal delay is a suitable radio characteristic for
CDMA fingerprinting.

LOCALIZATION ALGORITHMS
CILoS estimates a client’s location by comparing the client’s
current measurement with the fingerprint map collected in
the training phase. At a high-level, CILoS’ localization al-
gorithm is simple – find thek closest fingerprints to a sig-
nal delay reading and use some form of arithmetic mean to
estimate the measurement’s location. We use Euclidean dis-
tance to measure the distance between a measurement and
each of the fingerprints; for a given client measurement of
signal delay< PN r

1 , PN r
2 , . . . , PN r

n > and a given entry
in the fingerprint map< PN

fp
1 , PN

fp
2 , . . . , PNfp

n >, we
measure the distanced as:

d =

√

√

√

√

n
∑

i=1

(PN r
i − PN

fp
i )2 (1)

If any of the PNs are missing either in a fingerprint or in
the client measurement (e.g., due to an error in the measure-
ment or due to our filtering scheme), we assign maximum
signal delay (e.g. 64 chips) to that particular base station.
Once we compute the distances to each of the fingerprints,
we select thek closest fingerprints and estimate the client’s
location by taking the weighted average of selectedk closest
fingerprints. Our weighted average assigns to each distancea
weight equal to the distance’s reciprocal; in this way, closer
distances have higher weights. Finally, the choice ofk is
important to the estimate’s accuracy. We experimented with

different values ofk and we found that settingk = 3 leads
to the best accuracy of our estimates.

Our localization algorithms can be classified into two broader
categories: simple algorithms and feature selection algo-
rithms.

Simple Algorithms
The simplealgorithms use signal delay readings of all the
base stations in training and testing points to calculate the
Euclidean distance. We implemented two variants ofsimple
algorithms that differ in the number of channels used in mea-
surements: (i)allChannelsuses PN delay readings from all
the available channels; (ii)oneChanneluses PN delay read-
ings from a single channel.

Feature Selection Algorithms
The simplealgorithms assume that the accuracy of estima-
tion increases as we add more PN readings to the finger-
prints. In practice, some radio sources could be so noisy or
so unstable that the localization algorithm should always ig-
nore them. Identifying the set of all channels and PNs that
leads to the best accuracy is intractable; to do so, we would
have to verify all combinations of channels and PNs from
our radio map that includes 4 to 6 channels and 60 to 90 PNs.
Instead, we use a machine learning approach calledfeature
selectionto identify these sources of error. Feature selection
uses two standard greedy techniques to remove the source
of error – forward selection and backward elimination [3].
With forward selection, the algorithm starts with an empty
set and adds one “feature” (i.e., a channel or a PN) at a time.
At each step, the feature is selected greedily to be the one
leading to the best increase in accuracy out of all possibil-
ities. With backward elimination, the algorithm starts with
all features and removes one feature at a time, again greedily
selecting the ones that contribute the most to the error. Both
techniques stop when adding or removing a feature does not
lead to any accuracy improvements. We tried both forward
selection and backward elimination to compute two sets of
features. The results using these two feature sets were com-
parable so we only report the results using forward selection.

We implemented two variants of feature selection algorithms
that differ on the basis of how they filter noisy PNs: (i)fsch

uses the set of all channels as a feature set. In this case we
use PN readings from those channels that lead to best ac-
curacy; (ii) fspn uses all the channels and filters noisy PNs
individually as opposed to filtering them in group based on
channels.
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Figure 3. CDMA’s signal strength varies over time. The signal strength of a CDMA base station was measured over two hours.
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Figure 4. CDMA’s signal delay remains stable over time. The signal delay of a base station was measured over two hours.

−30

−20

−10

0

10

20

30

Time

S
ig

na
l D

el
ay

 (
ch

ip
s)

(a) February 26th, 2007

−30

−20

−10

0

10

20

30

Time

S
ig

na
l D

el
ay

 (
ch

ip
s)

(b) February 27th, 2007

−30

−20

−10

0

10

20

30

Time

S
ig

na
l D

el
ay

 (
ch

ip
s)

(c) March 1st, 2007

−30

−20

−10

0

10

20

30

Time

S
ig

na
l D

el
ay

 (
ch

ip
s)

(d) March 2nd, 2007

Figure 5. CDMA’s signal delay shows very low variation afterfiltering and windowing.
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Figure 6. The variation of signal delay over locations. Eachlocation
has a unique signal fingerprint using 6 different base stations.

Changing Reference Base Station
As discussed earlier, PN delays are determined in relation-
ship to a reference base station (usually the one with the
highest signal strength). However we noticed that the ref-
erence base station can vary over time at a location depend-
ing on network traffic and signal power. This means the two
fingerprints obtained using different reference base stations
at a single location may appear completely different. This
problem can be eliminated by converting the two fingerprints
to a common reference base station. Since the signal delay
measurement for each base station reflects the delay in chips
from actual arrival time, we can use Figure 1 to change the
reference base station and calculate new signal delay read-
ings using Algorithm 1.

Algorithm 1 Change reference base station

1. Calculate pilot arrival in chips for each PN.

PAactual = delayactual + 64 × PN

2. Calculate the expected pilot arrival for the new reference
PNx.

PAexpected = 64 × PNx

3. Calculate the difference in actual and expected pilot ar-
rival of PNx.

t = PAactual − PAexpected

4. Subtractt from PAactual of each PN. This changes the
reference to PNx.

PAnew = PAactual − t

5. Calculate the new signal delay for each PN.

delaynew = PAnew − 64 × PN

EVALUATION
In this section we first analyze the data we collected and then
evaluate the accuracy of our localization algorithms.

Figure 7 shows the average number of PN offsets (i.e., base
stations) recorded per location for different channel combi-
nations. We observe that while in principle the Condor scan-
ner can listen simultaneously to 512 base stations per chan-
nel, in practice interference from nearby base stations lim-
its the number of effective PN offsets (those with an Ec/Io
value above the -21db threshold) to an average of 4 and 2 for
Downtown and Suburb, respectively.

As expected, figure 7 also shows that it is possible to dra-
matically increase fingerprint width by scanning multiple
frequency bands from the same or different operators. We
show later in this section that increasing the width of the
fingerprint (i.e., the number of distinct PN offsets) leads to
substantial improvements in localization performance.

The higher Downtown numbers reflect the larger number of
available channels (6 vs. 4) as well as an average of twice
as many recorded PN offsets per channel. We hypothesize
that this is the result of differences in base station density
between downtown and suburban deployments as well dif-
ferences in building materials.

During data analysis we noticed that it is common for base
station to use the same PN offset for transmission on multi-
ple channels. We exploit this observation to reduce the effect
of PN aliasing. PN aliasing occurs if the pilot of a base sta-
tion does not arrive in the search window allocated for it. We
discover PN aliasing when we compared the recorded PNs
to the actual layout of base stations in our area, and noticed
the presence of some signal delay reading for base stations
which were not physically present.

Localization Accuracy
We evaluate the accuracy of our algorithms by removing a
training point from the radio map and then try to infer its
location. We repeat this process for all the training points.
The approach is somewhat pessimistic since no point in the
radio map matches with the testing point. Similarly, for our
machine learning algorithms we use leave-one-out cross val-
idation.

Table 2 shows the50th and90th percentile within floor lo-
calization error for both buildings. Shown are results for
algorithms that use different numbers of channels from the
two operators in our area, as well as two algorithms that use
feature selection.fsch uses the set of all channels as a feature
set andfspn uses all PNs from all channels as a feature set.
The error is calculated as the Euclidean distance between the
actual and inferred location of the testing point. Results for
the additional floors of Suburb are similar and are not shown.

Figure 8 provides an alternative view of the data with addi-
tional details for the 7th floor of Downtown. The plot shows
the cumulative distribution (CDF) of the localization error.
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Figure 7. The average number of PNs recorded per location fordiffer-
ent channel combinations.

As expectedoneChannelperforms the worst across all the
floors. The poor performance ofoneChannelis the result of
limited number of PN readings recorded using a single chan-
nel. We notice a significant improvement in the localiza-
tion accuracy as we widen the fingerprint by adding readings
from additional channels. For example,allChannelsop1+op2

improves the median accuracy ofoneChannelop1 by up to
40%. The two feature selection algorithms show that choos-
ing channels and PNs wisely further improves system per-
formance by removing noisy radio sources from the finger-
print. Specifically, fspn performs the best and achieves me-
dian accuracy between 4.5 and 6.7 meters. Overall fspn

achieves improvements in median accuracy of up to50%
overallChannelsop1+op2.

Comparison with 802.11 and GSM
Table 3 shows the within-floor median localization error of
802.11, GSM and CDMA for Downtown. GSM and 802.11
experiments use traces collected in our previous work [15].
The median width of 802.11 and GSM fingerprints is 5 ac-
cess points and 25 base stations, respectively. The table
shows that when all radio sources are used, 802.11 and GSM
significantly outperform CDMA. Once feature selection is
used, however, the performance of CDMA matches that of
802.11 and GSM. While feature selection also results in im-
provements for 802.11 and GSM, it is clear that it plays a
critical role for good CDMA performance.

Table 4 reports the effectiveness of 802.11, GSM and CDMA
to differentiate between floors for Downtown. Since the con-
crete floors significantly attenuate 802.11 signals, 802.11
achieves100% classification accuracy. CDMA also shows
high classification accuracy and slightly performs better then
GSM.

Sensitivity Analysis
In this section we analyze the sensitivity of localization ac-
curacy as a function of the Ec/Io threshold used for filtering
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Figure 8. CDF of Localization error for 7 th floor of Downtown.

base stations and the number of measurements collected per
location.

Ec/Io Threshold
We observed in our initial experiments that signal delay mea-
surements are stable as long as Ec/Io of a base station stays
higher than−21dB. Figure 9 shows how we selected this
threshold. The figure plots the localization error for the 5th

floor of Downtown as a function of decreasing Ec/Io cutoff
value. We observe that accuracy increases as we decrease the
Ec/Io value. Lower Ec/Io values ensure that the more remote
base stations having low signal strength are also included in
the fingerprints making them wider, which in turn increases
system performance. But there is limit to which we can de-
crease the Ec/Io. The threshold is around−21dB. By de-
creasing Ec/Io below threshold we start including those base
stations in the fingerprints that have unstable signal delay
measurements. These unstable base stations act as a noise
and decrease the localization accuracy as illustrated in the
figure. Experiments conducted on the 7th floor of Down-
town and in the Suburb building show a similar trend and
are therefore omitted.

Number of Measurements per Location
The results reported so far take120 measurements per lo-
cation for each channel. We use themodeof these mea-
surements as a signal delay reading for a particular location.
Each measurement takes about one second so recording of
120 measurements in a practical system imposes some tim-
ing constraints. The purpose of multiple measurements is
to get a stable reading. This implies we only require the
number of measurements that stabilize the signal delay read-
ing. We conducted the following experiment to estimate this
value. We measured the signal delay of several PNs at one
location for two hours. This resulted in approximately 14400
signal delay measurements for each PN. We calculate the
mode of these measurements and then chopped the entire set
of measurements into smaller segments. We used the seg-
ment or window sizes of 1, 5, 10, 15, 20, and 30 measure-
ments. We compute the mode of measurements in each of
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Downtown Suburb
7th Floor 5th Floor 5th Floor 4th Floor

50%-ile 90%-ile 50%-ile 90%-ile 50%-ile 90%-ile 50%-ile 90%-ile
fspn 4.5 18.4 4.7 21.3 6.7 23.3 6.0 19.9
fsch 6.4 20.5 8.5 25.8 8.6 21.2 9.8 19.4

allChannelsop1+op2 7.6 22.2 9.8 23.9 8.8 21.8 13.2 22.7
allChannelsop1 7.4 25.1 10.2 24.6 14.4 33.2 12.1 38.1
oneChannelop1 10.1 40.2 13.1 32.7 15.2 36.0 12.7 38.1

Table 2. Within-floor localization error in meters.

7th Floor 5th Floor
802.11 GSM CDMA 802.11 GSM CDMA

AllRadioSources 4.6 5.2 7.6 4.5 7.0 9.8
FeatureSelection 3.6 3.8 4.5 3.2 6.4 4.7

Table 3. Within floor median localization error in meters for Downtown.

802.11 GSM CDMA
100% 84% 87%

Table 4. Percentage of successful floor classification for Downtown.
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Figure 9. Localization error as a function of Ec/Io.

these segments and compare with the mode of entire experi-
ment. Figure 10 plots the CDF of the difference in the signal
delay reading of various window sizes to the signal delay
reading of the entire experiment. The graph includes signal
delay measurements of all the visible base stations. We ob-
serve that15 − 20 measurements are sufficient to stabilize
the signal delay reading.

CELL PHONE DEPLOYMENT ISSUES
The Condor PN scanner we used for our experiments is
a bulky unit that commands a significant price well above
10,000 USD. We had to resort to using a special modem
because current CDMA phones limit the availability of PN
delay information, e.g., only monitor PNs which are in the
active listandneighbour list, and do not give third party ap-
plications control over which channel is used. We observe,

0 1 2 3 4 5 6 7 9 11 15 25 35
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Figure 10. CDF of difference in signal delay for a window sizeto signal
delay of entire experiment. Window sizes of 1, 10 15,20 and 25are used.

however, that these are software and not hardware limita-
tions (the phone after all has the ability to monitor all 512
PNs and switch between channels), and that with the appro-
priate changes it should be possible to implement CILoS on
a standard CDMA phone.

RELATED WORK
The growing interest in location-aware systems and service
has resulted in a wealth of research on accurate localization
technology. Although the Global Positioning System (GPS)
provides accurate location information outdoors, it does not
operate well in indoor environments and other areas with
limited view of the sky. To address this limitation many sys-
tems have been pursued using a variety of techniques [12].
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The original Active Badge system [7] and follow on com-
mercial systems like Versus [21] use infrared emitters and
detectors to achieve 5-10 m accuracy. Both the Cricket [17]
and the Batt [20] systems use ultrasonic ranging to esti-
mate location. Depending on the density of infrastructure
and degree of calibration, ultrasonic systems have accura-
cies between a few meters and a few centimetres. Most re-
cently, ultra-wideband emitters and receivers have been used
to achieve accurate indoor localization [22]. The common
drawback of all of these systems is that they require custom
infrastructure for every area in which localization is to be
performed. As a result, these systems have not seen signifi-
cant deployment outside of high-value applications like hos-
pital process management. In contrast CILoS leverages the
existing CDMA cellular infrastructure for localization thus
eliminating the cost associated with infrastructure deploy-
ment.

The earliest work in fingerprinting systems was done by
Bahl et al. who observed that the signal strength of a ra-
dio source exhibits spatial variation but is consistent in time.
They used this observation to build Radar [2]. Using four
802.11 access points Radar located a laptop of its true posi-
tion with an accuracy of 2-3 meters. Since the first version
there have been many improvements to Radar’s fingerprint
matching algorithm to improve its accuracy [1,5,9].

Localization based on fingerprinting of mobile phone sig-
nals has been the focus of several recent research efforts.
Compared to 802.11, mobile phone networks provide better
coverage and have a more stable infrastructure that guaran-
tees a radio map that degrades at a slower rate. Prior to this
work, most of the work on mobile phone fingerprinting has
concentrated on GSM and has been based on receiver sig-
nal strength (RSSI) fingerprinting. Laitinen et al. [13] used
GSM-based fingerprinting for outdoor localization. They
have collected sparse fingerprints from the 6-strongest cells,
achieving 67th percentile accuracy of 44 m. Similarly, Laa-
sonen et al. [10] used the transition between GSM cell tow-
ers to determine the places a user goes. PlaceLab [11] is
another system that uses sparse traces of GSM and 802.11
radios to estimate user location with100 − 150 meter ac-
curacy in a metropolitan area. While these systems provide
outdoor localization, Otsason et al. [15] used GSM for in-
door localization. In addition to using 6-strongest cells for
fingerprinting, they also included the cells that are strong
enough to be detected. Using fine grained fingerprints with
granularity of 1.5 meter they showed that their system can
achieve the accuracy comparable to 802.11 based systems.
Similar, SkyLoc [19] uses GSM fingerprints to identify the
floor where a mobile user is located in large multifloor build-
ings.

In contrast, this paper focuses on CDMA-based fingerprint-
ing. CDMA support for cell-size reconfiguration to accom-
modate dynamic fluctuations in network load prevents the
use of RSSI fingerprinting – cell resizing affects the power
at which beacons are transmitted. Instead, the approach in-
troduced in this paper is based on the fingerprinting of signal
delay, which we have shown is not affected by cell resizing.

The only other research that we are aware of that explores
CDMA fingerprinting is by Li et al. [14]. This work, how-
ever, is based on RSSI fingerprinting and as a result is not
likely to be robust due to frequent cell resizing typical of
CDMA systems.

CDMA cellular network have also been used in past to pro-
vide mobile positioning based on time of arrival (TOA)
and time difference of arrival (TDOA) measurements [4, 8].
These techniques suffer from line of sight and multipath er-
rors, have low accuracy (50-500 meters) and are not applica-
ble to indoor environments. Instead, CILoS overcomes these
challenges by using signal delay fingerprints. Our technique
works indoors and has higher accuracy.

Finally, powerline positioning (PLP) [16] is another system
that uses fingerprinting for localization. PLP used tones
transmitted along the residential powerline to fingerprintdif-
ferent locations in a home.

CONCLUSIONS
We presented CILoS – an accurate indoor localization sys-
tem based on the fingerprinting of CDMA mobile phone sig-
nals. Traditional fingerprinting approaches based on the re-
ceiver signal strength (RSSI) do not work in CDMA systems
because CDMA cell sizes frequently change. Instead, CILoS
is based on the fingerprinting of signal delay, which we have
shown is resilient to cell resizing.

Experiments conducted in two geographically dispersed lo-
cations show that our system achieves a median accuracy be-
tween 4.5 and 6.7 meters in large multifloor building. More-
over, CILoS also correctly differentiated between floors 90%
of time. The high localization accuracy and floor classifi-
cation of CILoS is the result of wide fingerprints obtained
using multiple CDMA channels.
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