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ABSTRACT
This paper proposes seamless customer identification (SCI),
a means to identify physically present customers without any
effort on customers’ part beyond a one-time opt-in. With
SCI, customers need not present cards or operate smart-
phones to convey their identities. So, stores can provide
personalized shopping experiences at any time, not just at
check-out. SCI uses two complementary technologies: de-
vice detection and face recognition. Device detection identi-
fies customers by detecting their phones through low-power
wireless discovery, in our case using Bluetooth Low Energy
(BLE). Face recognition recognizes customers by matching
pictures captured during registration with images captured
by a store camera. Device detection makes face recognition
feasible by limiting the number of potential customers, while
face recognition provides directional information that device
detection lacks. Together, these technologies provide an or-
dering of likely candidates to a store employee, who makes
the final determination of identity. We have designed and
built SCI, and demonstrated its usefulness in an application
called Zero-Effort Payments (ZEP). ZEP uses SCI to let cus-
tomers effortlessly make small purchases at a coffee stand.
We conducted two real-world deployments of ZEP on ac-
tual customers: a two-day deployment during a technology
fair and a four-month deployment in our building. Across
both deployments, 274 customers made 705 purchases using
ZEP. Through these deployments and other experiments, we
demonstrate how our techniques make seamless customer
identification feasible and practical.

1. Introduction
This paper introduces seamless customer identification

(SCI), which lets a store identify its visiting customers with-
out their expending effort beyond a one-time opt-in. SCI
enables many different scenarios that make the shopping ex-
perience more personal and thus better for both the store and
the customer. For example, a store can: (1) provide its cus-
tomers on-the-fly coupons based on shopping history; (2)
dispatch the “right” sales associate trained in the type of mer-
chandise most interesting to the customer; (3) automatically
bill a VIP customer’s credit card if it is on file; or (4) auto-
matically process refunds without the need for the customer
to bring a receipt to validate a purchase made previously.

Customer identification is clearly useful since rudimen-

tary approaches are used today. However, their lack of seam-
lessness introduces shortcomings. For example, some coffee
shops offer customers a free coffee for every ten purchases,
some stores give discounts to customers who swipe loyalty
cards, and some business mail personalized coupons to peo-
ple’s homes. However, each of these relies on customers
remembering to carry something to the store and to present
it at checkout. More importantly, none of them allows the
customer to be identified before checkout for a more person-
alized shopping experience. For these reasons, seamlessness
can provide significant additional benefit to a customer iden-
tification system. Indeed, we believe SCI systems are one
instance of next-generation mobile applications that take us
closer to the vision of ubiquitous computing [30].

An SCI system must be more than just seamless, how-
ever: it must be fast, must not rely on expensive equipment,
and must accurately identify customers and their locations.
Speed lets stores provide quick service without making cus-
tomers wait. Not relying on expensive hardware enables SCI
to be quickly adopted at large scale. High identification ac-
curacy is necessary to avoid frustrating stores and customers.
Finally, location accuracy is useful for numerous scenarios
that depend on precise customer placement. For example,
a grocery store can identify customers’ interests better if it
knows what aisles they visit and in front of what type of mer-
chandise they stop. Similarly, a seamless payment scheme
must distinguish between two customers standing side by
side, in order to charge the correct buyer.

This paper presents the design, implementation, deploy-
ment, and operation of our SCI system. To have high accu-
racy, our SCI system combines two indoor localization tech-
nologies: (1) wireless localization based on Bluetooth Low
Energy (BLE) radios present in today’s smartphones; and
(2) face recognition using commodity cameras like the ones
found in webcams or the Kinect. It combines these to pro-
vide a limited number of candidates to a human employee,
who makes the final identification decision. This design al-
lows our system to meet its goals: it is fast, inexepensive,
and has high accuracy. As an illustration, employees never
identified the wrong customer during our deployments.

We chose device identification via BLE and face recogni-
tion because they are well-suited to seamless identification
and they mitigate each other’s shortcomings. These short-
comings, discussed in more detail in §6, are that (1) BLE

1



cannot distinguish between nearby people without a great
deal of costly infrastructure, and (2) face recognition has low
accuracy when faced with many potential identities. For-
tunately, BLE narrows the set of potential identities to just
those standing within wireless range, mitigating problem 2.
And, face recognition provides exact placement information
about its subjects, mitigating problem 1. Thus, the combi-
nation of these two technologies lets our solution meet its
speed, cost, and accuracy goals.

Although many cameras and smartphones today imple-
ment face detection in hardware, their algorithms are rela-
tively lightweight, detecting only a small number of large
faces when looking straight at the camera. In contrast, SCI
scenarios must detect and recognize faces present anywhere
in a large scene, not looking straight at a camera, in real-
time at rates of 10 frames per second (fps) or higher. An
important factor enabling us to meet such a speed goal is
our exploitation of the embarrassingly parallel nature of face
recognition. Specifically, we divide a store’s video feed
into frames and dispatch each frame to a separate face-
recognition “worker.” We also cut frames into multiple sub-
frames to further speed up face recognition. However, such
frame cutting can be dangerous because it may divide a face
into two parts, neither of which is identifiable by face recog-
nition. So, in §3, we discuss a simple frame cutting tech-
nique that guarantees that every person’s face will appear in
at least one sub-frame.

To evaluate the SCI system, we deployed it for a scenario
we call Zero-Effort Payments (ZEP). In ZEP, SCI lets a store
charge customers with “zero effort” on their part. The first
deployment of SCI was during a two-day technology fair
with thousands of attendees. ZEP processed 102 payments
for people buying espresso beverages from a coffee cart. The
second deployment, in contrast, lasted over four months with
participants using the system once or twice a day for several
weeks. By replaying the traces collected in these deploy-
ments, we can evaluate multiple SCI configurations, not just
the ones used in the deployments; we present results in §6.

The rest of the paper is structured as follows. §2 provides
background on biometrics and device identification schemes
useful in understanding why we chose the ones we did. §3
presents the design of our SCI system, and §4 describes its
implementation and how we used it to enable ZEP. §5 evalu-
ates the performance of our ZEP deployments. §6 describes
a series of experiments that justify our design choices. Fi-
nally, we present related work (§7) and conclusions (§8).

2. Background on Identification Schemes
This section describes the background on schemes for

identifying people through biometrics (§2.1) and through de-
vice identification (§2.2). This section’s goal is to present the
reasons that led us to choose face recognition as a biometric
scheme, and BLE for device identification, in SCI.

2.1 Biometric Schemes

A biometric is a quality of a person that is unique to that
person and can therefore be used to distinguish one person
from another. We call a biometric scheme a set of processes
that measure a biometric to determine the identity of a per-
son in a store. A biometric scheme must meet three require-
ments to fit the needs of SCI.
It must be accurate. The biometric scheme must have low
false positives and low false negatives. False positives lead
to mis-identification, whereas false negative lead to people
not being identified by the system. Both could be problem-
atic depending on the SCI scenario.
It must be non-invasive. The biometric scheme should re-
quire little additional effort on the part of the customer. This
is essential for meeting the seamless requirement of SCI.
It must resist attacks. It should be difficult for an adver-
sary to impersonate a particular customer. In all our SCI
scenarios, biometric identification is done in the presence of
a sales associate or cashier. Having a “human in the loop”
makes biometric schemes much harder to attack. For exam-
ple, while holding a photo in front of a camera can easily
fool a face-recognition algorithm, a cashier would certainly
notice an attacker holding a photo in front of his or her face
while making a payment.

2.1.1 Fingerprints
Fingerprints have been used as a biometric since becom-

ing popular in police work during the 19th century. To-
day, low-cost fingerprint readers are integrated into a vari-
ety of laptops, phones, and other devices. The technology
for searching large databases of fingerprints is mature, and
fingerprint-based identification has high accuracy.

Despite these benefits, we determined that fingerprints do
not meet the seamlessness requirement because they require
customers to touch a fingerprint sensor. Cleanliness of the
sensor is an additional issue because some people questioned
to us the hygiene of such a solution. Also, their associa-
tion with police work or the “mark of the beast” in Reve-
lations makes customers in some countries reluctant to pro-
vide fingerprints on demand; the supermarket chain Piggly
Wiggly discovered in 2006 that several of its customers cited
these reasons for not enrolling in a fingerprint payment sys-
tem [24]. There are also people, such as cooks or people who
have survived a fire, that lack easily readable fingerprints.

Finally, basic fingerprint readers are not attack-resistant.
It is possible to build “fake fingers” undetectable to a ca-
sual inspection by a store employee. Although sophisticated
mechanisms to combat such fake readings exist, these meth-
ods increase the cost and make reading less seamless [17,
27].

2.1.2 Voice-based Identification
The state of the art in voice-based identification requires

long voice samples to provide high accuracy rates. As the
state of the art advances, it may become viable to do zero-
effort identification of users by listening to short statements
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they make as a natural part of conducting a transaction.
The U.S. National Institute of Standards and Technology

has run an evaluation of text-independent speaker recogni-
tion since 1996 [26]. In 2010, the trials included 50 re-
search systems. One of the test conditions was to recognize
a speaker from 10 seconds of conversation; this is the con-
dition closest to our customer identification scenario, as we
do not expect a customer to engage in extended conversa-
tion with a cashier in all cases. The systems then needed to
match the speaker to one of 430 candidates, where the sys-
tems were trained with a mix of audio from phone calls and
in-person conversations.

The results showed roughly 80–85% accuracy in the best
case. The trials also called out a “greybeard effect” where
peoples’ voices change over time, and the voices of older
people are different than those of younger people. The re-
quirement for speech also means that speaker identification
cannot be used to “pre-position” coupons at the selector be-
cause the identification cannot happen until the customer
starts talking.

2.1.3 Iris Recognition
The human iris contains distinctive patterns that seem

unique to each individual, even between identical twins. Al-
most two decades ago, researchers proposed a way to com-
pute a short iris representation called an iris code [9]. The
key requirement is that the eye be illuminated with a suitable
source of infrared light, then viewed by an infrared-sensitive
camera. Iris codes have been computed across populations
of tens of thousands of people from different demographics
with low false positive rates, and the U.S. National Institute
of Standards and Technology conducts a periodic competi-
tion between different iris code implementations to measure
accuracy [18].

Today, multiple companies sell iris scanners that have
high accuracy at short range [23, 4]. To use one, a user
must look into an eyepiece that combines illumination and a
camera, a procedure far from effortless. Furthermore, recent
work has shown that one system can be fooled by eye im-
ages synthesized from iris codes [10], suggesting that even
iris recognition must be done with a “human in the loop” to
avoid simple impersonations.

Longer-range systems have started to emerge, such as the
recently announced “Iris on the Move” product aimed at air-
port security terminals [8]. This product consists of two
large pillars, similar to a metal detector. When someone
walks through the gap between the pillars, they shine in-
frared light on his eyes, capture the image, and compute the
iris code. This removes the need for user effort, but requires
placing pillars wherever people must be identified. Also,
there is little publicly available information on the accuracy
rates of long-range iris recognition systems.

2.1.4 Gait Identification
The advent of inexpensive depth cameras, such as the Mi-

crosoft Kinect, along with machine learning algorithms for
processing depth data, enables a new avenue for biometrics.
Structured light sensors work in most lighting conditions
and operate at medium- to long-range, an improvement over
other depth detectors like stereo RGB cameras and time-of-
flight cameras [6].

One possible depth-enabled biometric is gait identifica-
tion, which recognizes a person through idiosyncrasies in
walking. This biometric is effortless since a customer would
only need to walk into a section of the store covered by the
depth sensor. Recent work has shown the Kinect and ex-
isting machine learning algorithms can reconstruct skeletal
data using depth sensors with a 91.0% accuracy rate [21].
Although the security of this biometric is not well under-
stood, it appears difficult to intentionally mimic.

However, we determined that gait identification is not
ready for use in SCI because the technology has yet to be
proven in real-life scenarios. Furthermore, the study de-
scribed above only used seven subjects who all performed
the same walk in the same room. Even in such an unrealistic
environment, one test subject could not be recognized at all.

2.1.5 Face Recognition
Despite much research work spanning decades, face

recognition has started to be incorporated in practical sys-
tems only recently. Much journalistic evidence exists that
many police and law enforcement agencies use face recogni-
tion in an attempt to find criminals in large crowds or in areas
with high traffic. One of the earliest known deployments was
during the US SuperBowl in 2001 in which local and state
police agencies scanned the faces in the stadium for known
terrorists without making the public aware of the presence
of such technology [32]. Although no suspects were appre-
hended, police forces argued that such systems help deter
crime even when they do not lead to arrests.

Despite the evidence of these practical deployments, most
face recognition research work is done at the algorithmi-
cal level focusing on improving the accuracy rates of the
underlying algorithms, and testing them against published
benchmarks [20]. Our related work section (§7) will de-
scribe this work in more detail, but for a survey of recent
results, see [34]. The accuracy rates reported by this work
vary widely (e.g., 50% accuracy rate in [13], and 92% ac-
curacy rate in [35]) depending on the algorithms used, the
quality of the training data, and the conditions under which
testing is done, such as the degree of illumination, the varia-
tion in the subjects’ posing or expressions.

Upon surveying the work on face recognition algorithms
and their accuracy, two observations emerged. First, face
recognition accuracy degrades rapidly as the gallery size
increases. The gallery refers to the size of the database
of identities matched against. Second, face recognition to-
day cannot produce perfect results even under ideal condi-
tions. While the accuracy rate can improve drastically in
well-controlled experiments, it can never be guaranteed to
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be perfect. These two observations led us to conclude that
face recognition deployments in practice can succeed only
when the gallery size is not large and imperfect answers can
be tolerated.

Fortunately, our SCI scenarios can overcome the short-
comings of face recognition. First, the additional use of de-
vice identification can ensure that the gallery is never too
large. Second, the additional “human-in-the-loop” can cor-
rect for face recognition errors. For example, face recogni-
tion could provide a set of 4 choices for customer identifi-
cation to a store associate with high accuracy rates. These
observations together with the availability of mature, off-
the-shelf software made us choose face recognition as the
biometric for SCI. Our SCI implementation uses a recent
version of Microsoft Face SDK1.

2.2 Device Identification Schemes
Another way to identify a person is by identifying a device

he or she is carrying. Three potentially useful technologies
for this are Passive Radio-Frequency Identification (RFID),
Bluetooth, and Bluetooth Low Energy (BLE).

Passive RFID.
RFID involves communication between a reader and a

tag. The reader sends out a request for identification, and
the tag responds with its identity. In passive RFID, the tag
has no internal power source; it uses energy accompanying
the reader’s request to transmit its identity [14].

Passive RFID typically has low range, up to 3 meters [12].
Such short range would necessitate a customer to bring the
device close to a reader and thus limit the seamlessness of
the interaction. However, some RFID tags are claimed to
have even larger range, up to 6 meters [12], and range will
likely increase as technology advances. However, even if
range issues are removed, passive RFID still necessitates dis-
tributing a tag to each customer.

Bluetooth.
Bluetooth, on the other hand, is a wireless protocol almost

universally present in mobile devices users already carry.
The most relevant element of the Bluetooth protocol is dis-
covery, whereby one device can discover the presence and
identify of another device [5].

Unfortunately, Bluetooth discovery is inappropriate for
SCI for three reasons. First, when in discoverable mode,
Bluetooth devices are typically configured to not do any-
thing but be discovered [11]. Thus, users will not want to
keep their devices in discoverable mode at all times, and
will have to explicitly make them discoverable, making the
process of discovery non-seamless. Second, being in a dis-
coverable mode consumes significant power, generally about
100 mW [11]. Third, discovery times can be significant, on
the order of four seconds [19].

1http://research.microsoft.com/en-us/
projects/facesdk/.

BLE.
Fortunately, recent versions of the Bluetooth protocol,

starting with v4.0, include a subprotocol called Bluetooth
Low Energy (BLE) [5]. This protocol supports always-on
discovery by allowing a device to periodically perform a
low-power broadcast, called an advertisement, of its iden-
tity. This enables low-latency discovery at low power; in
our experiments, broadcasting once a second consumes only
0.22 mW. BLE is thus an ideal technology for SCI, and the
one we have selected for our prototype.

3. Design
Our SCI design has three main goals: accuracy, speed, and

scalability. High accuracy ensures we do not create frustra-
tion for employees and customers due to mis-identification.
Low latency is important to ensure we provide data in time
for it to be useful. Finally, for the system to scale to large
populations, the system must reliably identify customers
even when hundreds of thousands of potential customers are
registered in the system. This section describes the design
chosen to satisfy these goals.

An overview of this design is presented in Figure 1. The
detector is a computer with Bluetooth Low Energy (BLE)
capability and a camera. It uses BLE to detect the pres-
ence of customers’ devices (§3.1) and the camera to view
customers’ faces (§3.2). The detector determines which cus-
tomers are present and sends this information to a selector,
typically a store employee’s tablet computer. The selector
presents the customers’ names and head shots to the store
(§3.3), so when an employee needs to know a certain cus-
tomer’s identity, he or she can readily deduce it by com-
paring the customer’s appearance with the presented head
shots. The system obtains these head shots, along with the
customer device information, when the customer registers
with the SCI system (§3.4).

Face identification is CPU-intensive and can incur high la-
tency. To combat this, the detector offloads tasks to workers,
i.e., server-class machines on the premises or in the cloud
(§3.2.1). Face identification can also raise privacy concerns,
so we need to inform customers and give them control over
their private data (§3.2.2). To provide more transparency in
what data our system is gathering, we installed a CCTV-like
monitor that shows customers what the camera is capturing.

3.1 Device Identification
Each customer registered with our system must carry a de-

vice, such as a modern smartphone, equipped with a BLE ra-
dio. The customer configures his or her device to be always
discoverable, perhaps via an application. Because BLE is
designed for low-power discovery, such configuration does
not significantly impact the device’s battery life.

BLE includes various protocols for use in discovery, for-
malized as a set of roles a participant can fill [5]. The ones
we use are the broadcaster role, which periodically broad-
casts an advertisement, and the observer role, which watches
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Figure 1: Overview of SCI design.

for advertisements. The customer’s device acts as the broad-
caster and the detector’s device acts as the observer. We se-
lected one second as the broadcaster’s period to ensure we
do not have to wait long for a customer to be detectable, and
yet not consume much power on the customer’s device.

The observer role in BLE, which our detector uses, also
has an associated period: the scan period. During each scan
period, BLE’s observer role ignores multiple advertisements
from the same broadcaster. Therefore, to receive as many
advertisements as possible, we should not set the observer
period to be more than the broadcaster’s period. Addition-
ally, the receiver may miss incoming broadcasts when the
receiver’s radio transitions from one scan period to the next.
Thus, setting the observer period exactly equal to the broad-
caster’s period could cause these blind periods to precisely
line up with a particular broadcaster’s transmissions, mak-
ing the broadcaster invisible to the detector. We thus set
the observer’s scan period to 0.9 sec, slightly less than the
broadcaster’s period.

The detector decides a customer’s device is present if an
advertisement from that device was observed in the last five
seconds. The use of a period much longer than the broadcast
period allows for limited amounts of packet loss.

3.2 Face Identification
To determine which customers are in a certain location of

interest, we point the detector’s camera at that location. By
comparing the faces appearing in the camera’s video with
those of customers whose devices are nearby, the detector
decides which customers are not just close to, but actually
in, the area of interest.

To identify customers’ faces, the detector uses Microsoft
FaceSDK, an off-the-shelf library for detecting and identify-
ing faces in digital pictures. For each video frame the camera
captures, it passes the frame to FaceSDK. It also provides
FaceSDK with a corpus of potential customers to choose
from, namely those whose devices have recently been ob-
served. It describes this set of customers to FaceSDK as a
set of profiles, each of which contains a set of face images
of a certain customer. These are images we collect from the
customer during registration, as we will discuss in §3.4.

FaceSDK provides a ranking of each customer profile for
each face detected in a frame. These rankings can be com-
bined in many ways to produce face recognition scores for a
final identification ranking during payment. During our de-

ployments, we calculated a score for each customer using a
weighted average. However, our evaluation section §6 will
explore the effectiveness of different rankings.

As we will discuss in §6, face identification cannot guar-
antee perfect accuracy, even when identifying a person out
of a small set of choices. Even if only one of the nearby cus-
tomers is in view of the camera, that customer is not neces-
sarily the top-scoring one. Therefore, the ultimate decision
to identify a customer is never made by the detector alone.
As we will discuss in §3.3, the detector’s responsibility is to
present the scoring information to a selector held by a human
employee responsible for the final identification.

3.2.1 Reducing Face Identification Latency
Face identification can be CPU-intensive, so unless the

detector is highly provisioned it may become overloaded,
causing face identification tasks to queue and experience
high latency. One strategy to avoid this is to have the de-
tector drop frames instead of queueing them; after all, there
is a lot of redundancy in consecutive frames. However, a
preferred strategy is to offload work to workers, if they are
available on the premises or in the cloud.

Workers can offer large amounts of computing power for
the process of face identification. To leverage more than
one worker, we can readily parallelize the work since each
video frame’s processing is independent. We can thus lever-
age multiple workers by sending different frames to different
workers.

Although such frame-by-frame parallelization reduces the
latency of face identification, it cannot reduce it below the
time to process a single frame. Unfortunately, though, this
time can be significant. An average server takes about 2–
3 seconds on a 1280x768 frame that contains a few faces.
When many faces are present, as was often the case during
our technology-fair deployment, a frame can take as long as
seven seconds. Indeed, even a frame with no faces can take
up to one second.

To solve this problem, we designed another technique to
further reduce the latency of face recognition. We divide
each frame into sub-frames, and send each sub-frame to a
separate worker. To ensure we do not leave out any faces by
cutting them into unrecognizable halves, we cut the frames
in a way that guarantees that each face will appear in full in
at least one sub-frame. To do this, we determine the maxi-
mum length any human’s face could possibly occupy in any
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Figure 2: Dividing frames into smaller sub-frames to
speed up face recognition. The sub-frames must overlap
to ensure that one face appears in at least one sub-frame.
For example, the largest face above, although spanning
all sub-frames, appears in sub-frame #3 in full and thus
can be processed by face recognition.

dimension from the camera’s perspective. We then choose
sub-frames so that they overlap in at least this amount. Fig-
ure 2 shows an illustrative four-way cut in which any two
adjacent sub-frames overlap, but note that our technique can
use subframe counts other than four. As the overlapping re-
gion’s size is equal to the maximum facial length, each face
appears in full in at least one sub-frame. We experimented
with this technique during our system evaluation but we omit
presenting the results.

3.2.2 Protecting Privacy
SCI raises serious privacy concerns. In particular, some

people become uncomfortable knowing their faces are sub-
ject to an automatic face recognition process. In our experi-
ence, we ran into many people who thought technology has
reached a point today where it is able to identify and track
them even when not registered with our system. The dis-
crepancy between what some people think face recognition
technology can do and what it in fact does is quite large and
appears to stem from technologically-implausible scenarios
prevalent in some of today’s popular movies and TV shows.
To alleviate these concerns, we have taken several steps that
all aim at making our SCI process as transparent as possible.

First, in all our SCI deployments, we made heavy use of
signage indicating a face recognition system is deployed in
the area. Also, the area covered by our camera was clearly
delimited in the carpet by a dark region. We wanted to guar-
antee no identification was possible for anyone standing out-
side of the dark-region carpet. For this, we oriented the cam-
era downward at an angle that ensured we would not capture
even the feet of a person standing outside the area. One side
effect of such placement was that the camera was not shoot-
ing horizontally straight at the customer’s face, but rather at
an approximately 30◦ angle facing down. We suspect this
orientation hurts the face recognition accuracy although we
have not determined the exact accuracy loss.

The dark-region area was sprinkled with many signs de-
scribing our process and also listing three ways in which
customers could ensure that our data would not capture their
faces: by not stepping in the well-delimited area, by ask-
ing the operators to turn off the camera, or by sending us

e-mail requesting that we manually remove all frames cap-
turing their faces accidentally. Over the course of our de-
ployments, there were several times when the camera was
turned off due to a customer request, and we also received
e-mail requesting manual removal twice. Another lesson
learned from these deployments is that there is a need for
a universally-known signage for face recognition, the same
way there is well-understood signage for police investigation
areas, or CCTV cameras.

Additionally, we mounted a CCTV-like monitor to show
the camera feed to customers entering the dark-region area.
Our intuition is that people feel more at ease if they can di-
rectly view what the camera is capturing. This monitor also
showed when the camera was off, serving as a visual cue for
people who requested the camera be turned off.

3.3 Customer Identification
As discussed earlier, face recognition is not perfect, so the

detector cannot identify customers alone. Instead, it pro-
vides guidance to a human employee, and that employee
makes the ultimate customer identification. It provides this
guidance via the selector, which operates as follows. Ev-
ery second, it requests a list of potentially present customers
from the detector. The detector sends the selector the list
of customers whose devices are present, sorted in decreas-
ing order of score. The selector then presents these to the
employee to aid in his or her identifications.

To present the customer data, the selector displays the
head shots and names of the customers in order. In our cur-
rent version, only four head shots are visible at a time in
the selector. Since the employee may want to consider cus-
tomers with even lower scores than these four, the selector
provides a way to scroll to lower-scored customers.

An earlier iteration of our selector’s user interface posed a
problem for employees. Whenever the set of highest-scoring
customers changed, our UI immediately refreshed the dis-
play. Thus, frequently, an employee attempting to click on
a particular customer’s face to get more information would
be frustrated by it changing during that attempt. In some
cases, the employee would not even realize the screen had
refreshed, and would become confused by the screen show-
ing a different face than the one selected. To fix this, we con-
sulted a UI expert, who recommended the sliding-tile motif
we now use: The selector’s display is a tile of static infor-
mation; when it needs to be changed, the tile visibly slides
off the screen as another tile with new content slides in to
replace it. While obvious in retrospect, the following UI
principle guided the later design of all user-facing compo-
nents: UI refreshes must be made in a gradual manner and
not instantaneously.

3.4 Registration
A customer must register with our SCI system before it

can identify that customer. During registration, we record
the customer’s BLE MAC address and a short video of the
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Figure 3: Texas Instruments CC2540 Mini Development
Kit includes, from left to right, a debugger for program-
ming BLE devices, a key fob BLE device, and a USB don-
gle BLE device.

customer’s face. We produce a FaceSDK profile from all
the frames of this video, and we tell the customer to select
a single one of the frames as if he were selecting one for
a picture ID. We use this single selected frame as his head
shot, i.e., the picture we present to an employee trying to find
a match for a physically-present customer’s face.

4. Implementation
This section starts by presenting our concrete implemen-

tation of SCI, and then describes how we integrated it into
a Zero-Effort Payments (ZEP) system allowing customers
to make purchases at a coffee stand. According to SLOC-
Count [31], our implementation consists of 23,626 lines of
C# code excluding the face detection libraries.

4.1 BLE Devices
Many mobile devices support BLE, such as the iPhone 4S,

the iPhone 5, and many Android smartphones. However, as
BLE is fairly new, it is not yet well exposed to developers on
these platforms. For instance, the iPhone does not currently
allow applications to use the broadcaster role, or to maintain
BLE discoverability while the phone is asleep. This, com-
bined with the fact that phones with BLE were not gener-
ally possessed by our customers at the time our deployment,
made use an alternative BLE device.

We used Texas Instruments CC2540 BLE Mini Develop-
ment Kits. Each kit includes a USB dongle and battery-
powered key fob, as depicted in Figure 3. We used the USB
dongle as the detector’s BLE device, and we provided each
customer with a key fob that simulates a future smartphone
with better BLE support. We programmed each BLE fob to
use the broadcaster role with a one-second period, and the
dongle to use the observer role with a 1.1-second period.

Each BLE fob uses a CR2032 battery, which provides
200 mAh at 3 V. By connecting a power meter to the fob, we
determined that it consumes an average of 0.22 mW. This
suggests the battery should last slightly under four months,
which is consistent with our experience. Furthermore, since
consuming 0.22 mW for 24 hours would use only about
0.1% of an iPhone 4S’s battery capacity, we expect cus-
tomers will not mind running BLE continuously.

4.2 Store Devices
We ran the detector on an HP Z210 station equipped with

Figure 4: ZEP deployment in our building’s cafeteria.
On the left, the camera and CCTV-like monitor are
placed on the backwall. On the right, the tablet-based
selector is placed next to the POS.

Deployment #1 Deployment #2 

Duration 2 days (March 7th—8th, 2012) 20 weeks (May 14th – Sept. 28th, 2012) 

# of registered users 255 19 

# of payments made 102 603 

# of frames gathered 256,831 33,453,300 

Table 1: High-level statistics of our two deployments.

16GB of RAM and an 8-core Intel Xeon E21245 CPU run-
ning at 3.3GHz. We used a Microsoft LifeCam Studio cam-
era which currently retails for US$100, and a CC2540 USB
dongle as the BLE scanner. We ran the workers on 2–5
servers, with 8 workers per server, one per core. The selector
ran on an HP 2740P EliteBook tablet.

4.3 Zero-Effort Payments
ZEP relies on the SCI system to help a cashier identify

a customer wishing to make a payment. When a customer
asks to use ZEP, the cashier consults the selector, clicks the
customer’s face, then pushes a button to confirm the pay-
ment. ZEP then passes the customer’s payment identifier
to the cash register to complete the payment. This payment
identifier, in our case a meal card number used by our corpo-
rate cafeteria system, is obtained from the customer during
registration. Figure 4 shows the deployment of ZEP in our
building’s cafeteria.

The presence of the camera in our system allowed ZEP to
offer an additional feature, video receipts. Each time a trans-
action occurs, ZEP sends a receipt by e-mail to the customer

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12

# of Faces Per Frame

Deployment #1
Deployment

#2

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200

# of All Faces 20 Secs Before Xaction

Deployment #1

Deployment #2

Figure 5: Distribution of number of faces in the two de-
ployments. On the left, the graph displays the number
of faces per frame. On the right, the number of all faces
identified in all frames 20 seconds prior to a transaction.
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identified in the transaction, with a link to a video of the ten
seconds surrounding the payment. The original goal of these
receipts was to help with fraud: If an attacker were to imper-
sonate a victim, the victim would receive the video of the
transaction and could use it to dispute the charge. Although
there were no disputes during any of our deployments, we
found customers appreciated these video receipts. The few
times the system stopped sending receipts because of bugs,
we immediately received e-mails from customers pointing
out the lack of receipts.

4.4 Implementation Issues
The detector is a single point of failure. For this reason,

we decided to pursue a design that minimizes the recovery
time for the detector and uses a crash-restart model: On
any error, the detector crashes and quickly restarts afresh.
Note that a detector failure does not immediately affect the
UI tablet (i.e., the selector) which continues to function and
show the identification matches. Each second, the tablet con-
tacts the detector; if down, the tablet eventually times out (5
seconds) and shows no more identification matches. Until
the time out fires, the tablet remains functional and can be
used to conduct transactions. This design makes the detec-
tor’s restarts transparent to employees and customers.

Unfortunately, the behavior of our hardware made us
abandon a crash-restart model for the detector. First, our
camera took an average of two seconds to initialize, a behav-
ior consistent with inexpensive Web cameras. We believe a
lower bound of two seconds of downtime on recovery was
unacceptable for the detector’s availability needs. Also, the
camera driver would sometimes return an error to an initial-
ization request if the camera was recently running. Thus,
sometimes it would take 4–5 seconds of repeated tries for
the camera to initialize successfully.

Second, we originally relied on BLE packet capture soft-
ware written by TI, the manufacturers of our BLE hardware.
This software would capture any incoming BLE packets and
relay them over UDP to the detector. As this software was
designed for short-term debugging rather than long-term op-
eration, it often froze without reporting an error. So, about
two months into our second deployment, we re-wrote the
firmware of our BLE sniffer device and eliminated the need
to run the TI software.

Both these hardware issues made us reconsider a crash-
restart model for the detector. Instead, we decided to try
to make the detector as robust as possible by offloading as
much functionality as possible from it. The detector ended
up being quite lean; its roles were to capture the frames,
write one copy to the disk and feed one copy to the face
recognition workers, and offer a live feed of the face recog-
nition scores to the UI tablet. Despite relatively little func-
tionality, making the detector robust turned out to be chal-
lenging: At best, our detector could run for a week without
crashing. To overcome this issue, we restarted the detector
manually at the end of each working day.
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Figure 6: CDF of gap between observed beacons from a
BLE broadcaster at location 1 in Figure 8.

5. Evaluation of Our Deployments
We deployed ZEP in two environments. The first was Mi-

crosoft TechFest, a two-day technology fair with thousands
of attendees, and the second was a long-term installation at
a coffee stand in our corporate cafeteria. Table 1 summa-
rizes high-level statistics of the data gathered in each of the
two deployments. During TechFest, we only gathered data
during the second deployment day.

The two deployments were quite different. During Tech-
Fest, many people visited our booth and coffee cart. Thus,
most gathered frames contain several faces. In contrast, the
frames gathered during the long-term deployment in our cor-
porate cafeteria have much fewer frames on average. On
the left, Figure 5 illustrates the distribution of the number of
faces per frame during each deployment. On the right, Fig-
ure 5 displays the distribution of all faces found within 20
seconds before a transaction occurred. For deployment #2,
many frames only had one face; since our camera’s shutter
speed was 10 fps, only a few transactions (15%) had more
than 200 face images in the 20 preceding seconds. In con-
trast, during deployment #1, more than 200 face images were
discovered in those 20 seconds 95% of the time.

During both deployments, we never learned about any
mis-identification for any transaction. No customer ever re-
ported not being charged properly, or being charged on be-
half of someone else. In both our deployments, the ZEP
selector showed up to four identities as potential matches on
its screen. A simple interface allowed the cashier to scroll
down for the next four matches. During TechFest, ZEP dis-
played the correct identity of the paying customer on the first
screen, i.e., in the top four, 80% of the time. If one considers
the second screen as well, then ZEP was perfect: All cus-
tomers appeared on the top two screens. In fact, the correct
identity was in the top five matches 92% of the time. In our
second deployment, ZEP was always perfect and showed the
correct identity on the first UI screen.

5.1 BLE Detection Latency
To measure how long it takes to detect a BLE device, we

performed an experiment while the coffee stand was closed
and only one device was present. We placed this device at
the same location where customers would stand in our cafe-
teria, and recorded the time every time the detector observed
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a beacon from it. We performed this experiment twice, once
with a scan period of 0.9 sec and once with a scan period of
1.1 sec. Each experiment ran for 30 minutes. Figure 6 shows
the resulting CDFs of time between beacons.

This experiment shows us two things. First, we see that
using an observer scan period just over the 1-sec broadcaster
period causes more broadcast beacons to be missed than us-
ing a scan period just under 1 second. This is because a long
scan period can sometimes contain more than one beacon
and thereby cause repeats to be ignored. Second, we see that
some packet loss occurs that is not attributable to an overly
long scan period. However, this loss generally only causes
one or two consecutive beacons to be missed: Only 0.06% of
gaps were four seconds or more and no gaps exceeded five
seconds.

6. Evaluation of SCI
This section presents the evaluation of our seamless cus-

tomer identification scheme. We start by presenting our re-
sults on the accuracy of BLE-based identification alone, and
face recognition alone. We then show that the combination
of these two technologies improves accuracy to a level that
makes SCI practical.

6.1 Methodology
During each ZEP transaction, the cashier selected the per-

son paying at the register to enable payment. Since this
triggered the sending of a video receipt, and since these
receipts never triggered complaints about misdirected pay-
ments, we consider the cashier’s selection to be “ground
truth” for whose face is depicted in the central position in
the transaction video.

We use this information to experimentally evaluate how
well face identification would have worked under various
conditions. For instance, we can simulate an arbitrary set
of customers being device-present by passing their profiles
to the face identification algorithm. We can also simulate an
arbitrary parameter setting or algorithm by re-running face
identification on the recorded frames.

Various factors can affect the performance of device de-
tection, such as where the device’s holder is standing, where
and how the holder holds the device, and the remaining bat-
tery charge level of the device since it affects the voltage
the battery supplies. Unfortunately, we could not control or
even measure all these properties during our deployments.
Thus, to evaluate their effects, we manually modify these
conditions and measure their effects while the coffee stand
is closed.

The face recognition results use the entire trace gathered
during the first deployment, but only a two-week subset of
the second trace. We are currently running all experiments
on the full second trace, and we anticipate to have the results
ready in several weeks. We expect none of our conclusions
to change.

6.2 Performance of BLE Alone
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Figure 7: The BLE RSSI distributions for paying cus-
tomers versus passersby.

As described earlier, many SCI scenarios require a high
degree of accuracy when identifying a customer’s location.
For payments, it is important to detect which customer is
standing exactly at the head of the checkout line. For gro-
cery stores, it is important detect in front of what product
the customer has stopped. Thus, this section investigates
whether device identification using BLE alone would be ad-
equate for determining a customer’s location. For this, we
analyze signal-strength measurements performed over two
datasets: one gathered during our long-term ZEP deploy-
ment, and one we gathered systematically during off hours
but using the same BLE infrastructure.

In indoor environments, RF signal strength can vary due
to many factors including multipath interference, physi-
cal obstructions (including people), and interference from
other wireless networks. Nevertheless, previous research has
shown that RF signal strength can be used as an approximate
measure of the distance between wireless devices [3]. The
goal of our experiments is to determine, in the environment
of our ZEP deployment, whether our sole BLE receiver can
distinguish between the different locations just using signal
strength to approximate distance.

6.2.1 BLE RSSI Data Gathered During Our Second
Deployment

Our system logged the RSSI value of each BLE beacon
received from one of our participants’ fobs. We split this
data in two datasets. The first includes the RSSI values of
all customers within the last 5 seconds before making a pur-
chase. The second include the remaining RSSI values cor-
responding to customers either not making any purchases
(passersby) or too early to tell whether they will make a pur-
chase. If RSSI values present in the two datasets would be
disjoint, this would suggest that BLE alone could be used to
identify the customer making a purchase.

Figure 7 shows the cumulative distribution function of
these two datasets. For the paying customers, we used three
different ways to compute their RSSI values, by averaging,
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Figure 8: Diagram of the coffee stand area where the
ZEP long-term deployment took place. Locations 1
through 13 indicate the locations where we recorded the
signal strength of a customer’s BLE radio.

taking the median, and taking the maximum RSSI reading
within the last 5 seconds before making the purchase. While
the Figure displays all these three distributions, they are very
similar and thus we label them with a single label – “paying
customers”.

On one hand the distributions are distinct showing that
paying customers have stronger RSSI values than passersby.
On the other hand, there is a large area of overlap between
the two distributions. In fact, a quarter of passersby have
RSSI values strictly stronger than half the customers. This
suggests that RSSI values alone could not have been used for
identification in our deployment.

6.2.2 BLE RSSI Data Gathered Systematically

Experiment Design.
Figure 8 shows a diagram of the building lobby and cof-

fee stand where our long-term deployment took place. Loca-
tions 1 through 13 in the diagram represent locations where
we placed a customer’s BLE radio, and then recorded the
signal strength as reported by the BLE receiver. Location 1
in the diagram is where a customer at the head of the line
would stand when making a purchase, directly across from
the cash register. Locations 2 through 12 correspond to other
possible locations of people in the lobby area. Location 13
is a location behind the counter, that is as close as possible
to the BLE receiver (approximately 1 foot away from the
receiver).

We performed experiments at each location. For certain
locations we varied the position of the BLE radio on the per-
son performing the experiment, and we varied the battery
charge on the BLE radio. Each result shown in the graphs
below shows the signal strength data as recorded by the BLE
receiver over a two minute period. We show both the mean

 

Figure 9: Mean signal strength (RSSI) and standard de-
viation, at locations 1 through 13.

signal strength and the standard deviation for each result.

Results.
In the environment shown in Figure 8, location 1 is where

the current paying customer is likely to stand, and it also
happens to be the nearest location to our BLE receiver be-
sides its own location 13. Figure 9 shows the signal strength
from all 13 locations, where each location is identified on
the x-axis. In all 13 locations, the BLE radio was in the front
pocket of the person performing the experiment.

In this figure, we see a rough correlation of distance and
signal strength, but with significant variation. For example,
the mean RSSI at location 6 is larger than that at locations
1, 2, and 5. However, 1, 2, and 5 are all closer to the BLE
receiver than location 6. In this figure, the only location that
stands out as being significantly different than the others is
location 13 (the closest location to the BLE receiver).

This suggests that if we were to relocate the BLE receiver
to be very close to the cash register, then this might allow to
us to determine which customer is standing at the register.

Figure 10 presents the effects on signal strength of where
the BLE radio is located on the person carrying it. For each
of five positions, we show four bars, which represent 1) in
the person’s front pocket, 2) in the person’s back pocket, 3)
in the person’s right hand, and 4) inside a laptop shoulder
bag that is zipped shut. From this graph, we see that the
location of the transmitter on the person who is carrying it
can have a large effect on the signal strength: in location 1,
the in-hand signal strength is more than 12 dB larger than
the back-pocket signal strength.

Finally, Figure 11 presents the effects of battery charge of
the BLE transmitter on BLE signal strength at the BLE re-
ceiver. As with the previous graph, we show three bars for
each of five locations. Each bar type corresponds to a dif-
ferent remaining-charge level, and thus a different voltage
level, for the battery that powers the BLE radio. We used the
same BLE transmitter, but replaced the battery to perform
these experiments. In this graph, once again we find that
variations in battery charge can lead to measurable differ-
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Figure 10: Comparison of BLE signal strength at differ-
ent positions on a person (front pocket, back pocket, in
hand, and in shoulder bag).

ences in the receiver mean signal strength. We see the most
pronounced effect at location 13, which is very close to the
BLE receiver, where the high charge battery has a mean sig-
nal strength that is more than 10 db larger than the battery
with a low charge.

Our findings from Figures 10 and 11 indicate that even
if we colocated the BLE receiver with the cash register, it
would still be difficult to say with certainty which person
was currently standing in front of the register. For example,
in Figure 11, we see that the bottom of the standard devia-
tion bar for location 13 with low battery power overlaps with
the top of the standard deviation bar for location 1 with low
battery power. As a result, we conclude that in our setting,
using BLE by itself is inadequate. It is possible that if we
used multiple BLE receivers and we performed RF environ-
ment profiling [2], this could provide the accuracy we need.
However, such an approach would increase the deployment
cost and installation overhead.

6.3 Performance of Face Recognition Alone
We now evaluate the accuracy of customer identification

based on face recognition alone. Such a scenario is very
ambitious. As our related work section will show (§7), face
recognition accuracy in uncontrolled environments, i.e., in
the wild, is far from perfect. Our use of face recognition
is done frame-by-frame; more sophisticated techniques also
exist. For example, face tracking is the ability to track a
face across frames; face tracking could improve accuracy
rates because it treats a collection of faces spanning multiple
frames as one single identity. We plan to implement and
investigate more sophisticated techniques like this in future
work.

Our accuracy evaluation compares the rankings produced
by face recognition with the “ground truth”. In particular, we
compute the rank of the paying customer when face recogni-
tion alone is used for identification; a rank of “1” would be a
perfect match. However, in our system deployment, any rank

 

Figure 11: Comparison of different battery charges on
the BLE transmitter (Low = 1.75V, Medium = 2.10V,
High = 2.8V).

between “1” and “4” guarantees that the customer’s face im-
mediately appears on the selector UI facing the cashier. For
ranks higher than “4”, the cashier would need to scroll down
through the UI to find the identify of the paying customer.

Since face recognition produces a ranking of customers
for every face image found in every frame immediately pre-
ceding a transaction, these separate rankings must be aggre-
gated together to produce a single full ranking. Many sep-
arate schemes and heuristics can be used to aggregate these
rankings. Based on our experience, we selected the follow-
ing aggregation schemes, and used them on all frames gath-
ered up to 20 seconds before a purchase was made:
1. Average/Median of all rankings. This scheme com-
putes, for each customer, the average or median of all rank-
ings that person attains for every face image in the transac-
tion. Customers are then ranked by this measure.
2. Best ranking. This scheme computes, for each customer,
the best ranking he achieves for all faces in the transaction.
Customers are then ranked by this measure.
3. Largest face. This scheme chooses the largest face in a
frame and uses its ranking. The intuition behind this heuris-
tic is that the paying customer is likely to be closest to our
camera. However, note that this is not perfect because (1)
people have different face sizes, and (2) several people can
all stand in front of the cashier even though only one is the
true paying customer.
4. Top k. This scheme considers the top k matches for each
ranking for each face. These rankings are then summed. An
additional boost is added to the top-ranked customer for each
face image. The intuition behind this top-k filtering is that
beyond the first k results, face-recognition results are proba-
bly very noisy and should be discarded.

We found that the last two schemes produce the high-
est accuracy, so we omit presenting results for the other
schemes. Figure 12 show the distribution of accuracy for
each of our two traces. During TechFest, our database had
255 identities. With our off-the-shelf face recognition library
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Figure 12: The accuracy of face recognition alone for the
TechFest trace, on the left, and the coffee stand trace, on
the right.

alone, a SCI system would rank the identity of the true cus-
tomer in the top four matches, i.e., without the need for the
cashier to scroll down searching, only 10–15% of the time
depending on the heuristic used. Even worse, the identity of
the customer would be in the bottom half of the ranking 25%
of the time.

We manually inspected many of these transactions and we
discovered two reasons for this lack of accuracy. First, for
some transactions, the paying customer is accompanied by
one of our project members during TechFest. Our project
members tended to look at the camera much more often than
the customer did. On such frames, face recognition alone is
likely to mistake our project members for the true customer.
Second, some customers faced downward because they were
looking at our selector, a featured piece of equipment in our
demonstration. Face recognition would struggle to find an
accurate match for such frames.

During our long-term deployment, the accuracy rates
improve significantly. This is unsurprising, because the
database size is much smaller. While for the previous trace
we used k = 10 for our top k heuristic, here we used k = 5
due to the smaller-sized database. This heuristic alone would
find the true identity of the customer on the first screen of the
selector, i.e., among the top four matches, more than half the
time. However, in some cases, the true identity of the cus-
tomer is still ranked very low. As with the previous deploy-
ment, this often occurred when the customer never looked up
at the camera. Moreover, in this second deployment at the
coffee stand, we had to position the camera eight feet above
ground looking down at a 30◦ angle due to our privacy re-
quirements, as described in §3.2.2. This positioning made it
even less likely for customers to look “up” at the camera.

6.3.1 Richer Profiles Improve Accuracy
We also experiment with the size of the customer profile

gathered at registration time. During registration, we cap-
tured a short video with the customer’s face. We instructed
the customer to “act naturally”, and most customers looked
straight at the camera for about 3–5 seconds, during which
we gathered 30–70 frames. We deliberately did not instruct
the customers to show different poses or do anything sophis-
ticated to register because we envision such SCI registrations
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Figure 13: The accuracy of face recognition with 1 frame
versus 10 frames per profile. The TechFest trace is shown
on the left, whereas the coffee stand is on the right.

need to be as simple as possible to be viable in practice.
From this short video, we extracted a set of frames and

used them as a person’s “profile” during face recognition.
Figure 13 shows the accuracy of face recognition alone with
10 frames per profile versus 1 frame per profile for both
traces. Although the accuracy of face recognition improves
with richer profiles, the improvement is not drastic. This
suggests that customer registration in SCI could be done
with a single face-frontal frame, similar to the single cam-
era shot taken during a driver’s-license registration, without
much loss in face recognition accuracy.

6.4 Combining BLE with Face Recognition
The previous section presented the accuracy of face recog-

nition over the entire database of SCI registrants. BLE al-
lows SCI to drastically reduce the size of the database be-
cause the candidates for face recognition would only be
people discoverable by BLE. For example, the database of
our TechFest trace had 255 registrants, whereas with BLE,
we rarely discovered more 10 people in the vicinity of our
booth.

We systematically investigated SCI by selecting different
samples of people assumed to be “nearby” due to BLE dis-
covery. Figure 14 shows the probability of displaying the
correct identity of the paying customer on the top screen
(i.e., top 4 matches) and top two screens (i.e., top 8 matches)
as a function of the number of people nearby. On the left,
the data from deployment #1 shows that when 10 people are
nearby, the correct match is found on the top UI screen 65%
of the time, and on the first or second UI screen 81% of the
time. On the right, the data from deployment #2 (the x-axis
is using a log-scale) shows that when 10 people are nearby,
the correct match is found on the top UI screen 60% of the
time, and on the top two screens 90% of the time.

Putting these results in perspective, SCI systems can iden-
tify the correct identity of their VIP customers 80–90% of
the time with minimal effort on behalf of the store’s em-
ployee. These results assume that having more than 10 VIP
customers present nearby is rare in many SCI scenarios.

7. Related Work
The techniques used for seamless customer identification
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Figure 14: Probability of correct matching the paying
customer on the top and top 2 UI screens as a function of
the number of people nearby. On the left, deployment #1
(TechFest). On the right, deployment #2 (cafeteria); the
x-axis is displayed in log-scale to zoom in on the head of
the curve.

draw on previous work in wireless localization, face recogni-
tion, and mobile systems that make use of computer vision.

7.1 Wireless Localization
Over the past decade, there has been much work on using

wireless radios for localization. One of the earliest projects
was Radar [2], which built an indoor positioning system
based on Wi-Fi signal strength. However, research projects
have used a variety of types of wireless radio including Wi-
Fi, RFIDs, Bluetooth, cellular, and ZigBee, to locate peo-
ple indoors; excellent overviews can be found in two recent
books [15, 33].

Despite all this work, wireless-based indoor localization
is not a solved research problem. While wireless-based out-
door localization is now a mainstream technology present in
smartphones and laptops, indoor localization has yet to be-
come ubiquitous despite much effort.

7.2 Face Recognition
As mentioned in §2, most research work in face recogni-

tion has focused on designing new algorithms and improving
their accuracy rates. In contrast, there is much less published
work on the challenges facing the deployment of face recog-
nition systems in practice. In the US, the National Insti-
tute for Standards and Technology (NIST) has put together
a benchmark called the face recognition grand challenge
(FRGC). While researchers are measuring their algorithms’
accuracy against benchmarks like FRGC, these benchmarks
are far from the conditions systems experience in practice.
For example, each person in the FRGC dataset of profiles ap-
pears in exactly seven frames: four frontal controlled shots
taken in a studio under various lighting sessions; two frontal
uncontrolled shots where the subjects appear in real life; and
one 3D image of the subject [20].

In contrast, our experience with SCI differs in myriad
ways from this research due to the needs of application to
practice. For instance, frames do not necessarily capture
front shots of people; indeed, some people never look at the
camera. Also, the lighting can drastically change over time,
e.g., a lightbulb may stop working for a day then get replaced

with a newer, much brighter bulb. Additionally, for cost and
logistical reasons, we used a non-professional-grade camera.

Nevertheless, the face recognition literature [28, 35, 34]
contains several projects focused on evaluating the accuracy
of face recognition in more realistic scenarios. One project
evaluated the accuracy of recognizing a set of 35 celebrities
in videos stored on YouTube; it reported a 60–70% accu-
racy rate depending on the algorithm used [13]. To achieve
this, the identification techniques relied on face tracking,
which identifies the same person across multiple consecu-
tive frames. Our SCI deployment did not use face tracking.

Another related project conducted an accuracy evaluation
of several face recognition techniques using footage of lower
quality [7]. The accuracy is evaluated using a metric called
the half-error total rate, which is the average of false pos-
itive and false negative rates. While measuring accuracy is
similar to measuring the false positive rate, a higher accu-
racy came at a higher false negative rate, which means that
many frames reported no faces detected. Examining the re-
sults, most algorithms achieved an 80% accuracy rate only
by admitting a 25–50% false-negative rate, i.e., by accepting
no faces are found1 in a quarter to half of all frames.

Finally, a few other projects report high accuracy rates
for face recognition in uncontrolled environments, specifi-
cally 86.3% [25] and 92% [35]. However, these results are
obtained by constraining subject poses to be either front-
facing [25] or constant across frames [35].

7.3 Mobile Systems and Computer Vision
Recent work has started to use computer vision in mobile

systems. One application is localizing distant objects, such
as buildings, by looking at them through a smartphone [16].
The combination of GPS-based localization with computer-
vision processing of images gathered by a smartphone shows
promising results in accurately pinpointing an object’s loca-
tion. Another application is cloud-based face recognition,
such as that done by Google Picasa, to automatically tag
photos taken by a smartphone [22]. Another project imple-
ments an indoor localization scheme based on ambience fin-
gerprinting by observing that most stores have very distinct
photo-acoustic signatures [1]. Finally, a recent workshop pa-
per demonstrates the practicality of identifying people based
on the patterns and colors of their clothes [29].

8. Conclusions
This paper introduced the notion of seamless customer

identification (SCI), and showed how it could be practically
built and deployed. Our key observation is that no single
identification technology is sufficient, but combining device
detection and face recognition lets each mitigate the other’s
shortcomings. Device detection can make quite accurate de-
terminations about whose devices are nearby, since packet
loss is rare. But, it cannot easily distinguish customers in
different locations since signal strength is poorly correlated
with location. Face recognition, on the other hand, can indi-
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cate exactly where faces are. But, it cannot determine who
those faces belong to if it must choose among all registered
customers rather than just those in wireless range. Together,
they can provide better information than either alone to aid
store employees in identifying customers.

We further demonstrated the real-world usefulness of SCI
by using it to deploy Zero-Effort Payments (ZEP). ZEP cus-
tomers need expend no effort to pay, since cashiers can use
SCI to determine who they are and directly bill them. Across
our two deployments, 274 customers made 705 purchases,
and we received no complaints about the wrong customer
being billed.
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