

Zero-effort Payments (ZEP)

Victor Bahl, Ronnie Chaiken, Weidong Cui, Jay Lorch, David Molnar, Jitu Padhye, Bryan Parno, Stefan Saroiu, Chris Smowton, Alec Wolman

Microsoft Research

Disclaimer

- All work presented is part of computer science research conducted at Microsoft Research
- Microsoft Research's role is to develop new ideas and technologies
- We cannot comment on when or if such technologies will make their way into Microsoft's products

Imagine The Future of Commerce

- Imagine a world in which:
 - At Starbucks, they start making your favorite drink the moment you enter the store
 - Sales people will already know your purchase history, and the kind of clothes you are shopping for
 - You can return merchandise without showing receipt
 - You can check-in a hotel or on a plane without waiting in line

This Talk's Goal

• In this talk, we show that the technology needed to turn this vision into reality is coming soon!

Main Problem: Customer Identification

- Mission: identify customer on the fly with zero-inconvenience
- General idea: Use unobtrusive biometrics
 - Biometrics: identification of humans by their characteristics or traits
- Our work: Apply customer identification to making payments at Microsoft cafeterias
 - Zero-effort Payments

Possible Biometrics

- Using fingerprints
 - Accurate, but invasive
 - Easy to commit hard-to-detect fraud
 - Not everyone has a fingerprint
- Using voice
 - Inaccurate
 - Requires users to keep a "long speech"
- Iris scanning
 - Accurate, but invasive

Face Recognition

- Benefits:
 - Accurate when used to select among few people
 - Non-invasive
 - Difficult to commit hard-to-detect fraud
- Cons:
 - Accuracy falls when selecting from many people

Why is Face Recognition Hard for Computers?

ate based

- Compu measu
 - Face
 - Unc
- Face re
 - Face
 - Face

Why is Face Recognition Hard for Computers?

- Compumerative measure
 - Face
 - Und
- Face re
 - Face
 - Face

on

ate based

Overcoming Accuracy Barriers

- Leverage wireless proximity technology found in today's smartphones
 - Enables quick discovery of "nearby" devices

• e.g., Bluetooth Low Energy (BLE)

Combining the Best of Both Worlds

- Wireless proximity: works well to discover "nearby" people
- Face recognition: works well when selecting among few people
- Two steps:
 - 1. Use wireless proximity to discover the 20 people in a Starbucks store; eliminate everyone else
 - 2. Do face recognition on 20 people (not millions)

Final Solution in Practice

- Two steps + final human-based validation:
 - Wireless proximity
 - Face recognition
 - Add human-assistance for final confirmation

Video-based Demo

ZEP Workflow

BLE devices \$50 webcam

Cashier

Customer

Opportunity for Better Receipts

- Once purchase transaction is final, ZEP sends an e-mail receipt:
 - Includes link to video showing the purchase
 - Mechanism used for disputes

Privacy Issues

• How will people react when cameras at every cash register?

- No legal precedent available
 - Unlike security, traffic cameras
- ZEP includes privacy protocol for turning off camera

Conclusions

- ZEP enables new opportunities for commerce by identifying customers quickly and seamlessly
 - Many opportunities for new scenarios

• Privacy issues *can* be handled and mitigated

Questions?

• <u>ssaroiu@microsoft.com</u>