
Two Case Studies in Predictable Application Scheduling Using Rialto/NT

Michael B. Jones
Microsoft Research,

Microsoft Corporation
One Microsoft Way

Redmond, WA 98052, USA

mbj@microsoft.com
http://research.microsoft.com/~mbj/

John Regehr
Department of Computer Science,

Thornton Hall
University of Virginia

Charlottesville, VA 22903-2242, USA

john@regehr.org
http://www.cs.virginia.edu/~jdr8d/

Stefan Saroiu
Department of Computer Science &

Engineering
University of Washington

Seattle, WA 98195-2350, USA

tzoompy@cs.washington.edu
http://www.cs.washington.edu/homes/

tzoompy/

Abstract
This paper analyzes the results of two case studies in

applying the Rialto/NT scheduler to real Windows 2000
applications. The first study is of a soft modem—a modem
whose signal processing work is performed on the host
CPU, rather than on a dedicated signal processing chip.
The second is of an audio player application. Both of
these are frequently used real-time applications—ones
running on systems that were not designed to support
predictable real-time execution. To function correctly,
both applications require that ongoing computations be
performed in a timely manner. In both cases, we first
measured an original version designed to run on Win-
dows 2000, and then modified the application to take ad-
vantage of ongoing CPU Reservations provided by the
Rialto/NT scheduler. We report on the benefits and prob-
lems observed when using reservations in these real-
world scenarios. In both cases, we found that a real-time
scheduler can provide the needed predictability for the
application in the presence of competing applications,
while also providing other benefits, such as minimizing
the soft modem’s impact on the scheduling predictability
of other computations in the system. We also describe the
methodologies we used to analyze the real-time behavior
of the operating system and applications during these
studies, including the use of instrumented kernels to pro-
duce execution traces.

1. Introduction
Novel implementations of two real-time scheduling

abstractions were developed within the Rialto real-time
operating system [2]: CPU Reservations and Time Con-
straints. These abstractions allow activities to obtain
minimum guaranteed execution rates with application-
specified reservation granularities via CPU Reservations,
and to schedule tasks by deadlines via Time Constraints,
with on-time completion guaranteed for tasks with ac-
cepted constraints.

We implemented these abstractions within a research
version of Windows 2000 called Rialto/NT [4]. While
implementing the Rialto scheduling abstractions in Ri-
alto/NT involved solving several interesting engineering
and research problems, this work just provides a means to
larger ends. The main goal of Rialto/NT has always been

to bring the benefits of predictable scheduling to Win-
dows 2000 applications. This paper presents results ob-
tained when applying Rialto/NT's CPU Reservations to
two different applications designed for Windows 2000
that require predictable execution to function correctly: a
soft modem and an audio player.

The remainder of this paper is structured as follows:
Section 2 presents the background behind these studies.
Section 3 describes the methodology and tools used. Sec-
tion 4 is the Soft Modem application study. Section 5 is
the Audio Player application study. Section 6 presents
related work. Section 7 discusses possibilities for further
related research. Finally, Sections 8 and 9 present the
contributions and conclusions from these studies.

2. Research Background
2.1 Commodity Operating Systems and Real-

Time Applications
General-purpose operating systems such as Windows

2000, Linux, and Solaris are increasingly being used to
run time-dependent tasks such as audio and video proc-
essing despite good arguments against doing so [7]. This
is the case even though many such systems, and Windows
2000 in particular, were designed primarily to maximize
aggregate throughput and to achieve approximately fair
sharing of resources, rather than to provide low-latency
response to events, predictable time-based scheduling, or
explicit resource allocation. Nonetheless, since these sys-
tems are being used for time-dependent tasks, it is impor-
tant to understand both their capabilities and limitations
for such applications.

2.2 Windows 2000 Scheduling Structure
Windows 2000 scheduling is described in detail in

[8]; a brief overview follows.
Windows 2000 has 31 priority levels. Priorities 1-15

are variable levels; thread priorities in this range are dy-
namically adjusted to increase responsiveness. For exam-
ple, quantum size is increased for threads in the fore-
ground process, priority may be boosted upon wakeup,
and priority is boosted for threads that have been ready to
run, but not scheduled, for several seconds. The latter
heuristic is designed to break priority inversions by giving
starved threads a chance to release shared resources they
may be holding. This heuristic is effective, although we

Appeared in Proceedings of the Seventh Real-Time Technology and
Applications Symposium (RTAS 2001), Taipei, Taiwan, May 30-June 1, 2001.

2

will see in Section 5.4.2 that inversions are not broken
quickly enough to be useful for multimedia applications.

Priorities 16-31 are real-time priorities. Quanta and
priorities of threads in this range are not adjusted—the
scheduler simply runs the threads at the highest priority in
a round-robin manner.

2.3 Rialto/NT Real-Time Scheduling
Rialto/NT [4] was designed and built to combine the

benefits of today’s commodity operating systems with the
predictability of the best soft real-time systems. Rialto/NT
supports simultaneous execution of independent real-time
and non-real-time applications. These goals are achieved
by computing a deterministic schedule that meets the de-
clared requirements of all admitted real-time tasks when-
ever the set of real-time applications changes.

In Rialto/NT, threads make CPU Reservations to en-
sure a minimum guaranteed execution rate and granular-
ity. A CPU Reservation request is of the form reserve X
units of time out of every Y units for thread A—requesting
that for every time interval of size Y, thread A be sched-
uled for at least X time units, provided it is runnable. For
example, a thread might request 800µs every 5ms, 7.5ms
every 33.3ms, or one second every minute.

The current implementation of Rialto/NT has two re-
strictions: (1) CPU reservations must have values that are
integer multiples of milliseconds, since they are driven off
the periodic Windows 2000 clock and (2) the period of a
reservation must be a power-of-two multiple of a milli-
second, due to a choice of algorithms within Rialto/NT.
Rialto/NT schedules a thread by raising the thread’s ef-
fective priority as seen by the Windows 2000 scheduler to
30 (the second highest priority in the system).

Rialto/NT also implements deadline-based Time
Constraints which, although not used in this paper, are
also described in [4].

3. Methodology and Tools
3.1 Instrumented Windows 2000 Kernel

We took measurements using a “perf kernel”—an in-
strumented version of Windows 2000 that was developed
in order to understand and tune the OS. The perf kernel is
capable of logging a wide variety of events to a physical
memory buffer and then dumping them to disk for post-
processing. During our experiments, we used predefined
perf kernel functionality to log all deferred procedure
calls (DPCs), thread context switches, thread and process
creations and deletions, and synchronization events. We
also logged application-specific data such as modem
hardware register values and audio starvation events.

The instrumented kernel offers the same performance
as a regular kernel when no events are being logged.
Furthermore, logging an event is fast: it took 549ns on the
450 MHz Pentium II used in the soft modem study.

Logging produced around 10MB of data per minute.
After dumping the binary event logs to disk and convert-

ing them into a text format, we post-processed the output
with Perl scripts that filtered out uninteresting data and
converted the remainder into a more readable format.

3.2 Remoteres
We implemented a small program called remoteres

that is able to begin and end CPU Reservations for any
thread in the system. Using this simple tool, we gave res-
ervations to various threads and watched what happened
when there was contention. Remoteres was very useful as
a tool for experimenting with real-time performance: not
only did it keep recompiles out of our critical path, but we
could also try out different reservations without even re-
starting an application.

4. Soft Modem Application Study
Soft modems use the main CPU to execute modem

functions traditionally performed by a digital signal proc-
essor (DSP) on the modem card. Soft modems have en-
joyed large success in the home computer market. Two
reasons for this are low cost and the flexibility of migrat-
ing to newer technologies by simple software upgrade.

This study presents detailed performance characteris-
tics and resource requirements of a popular soft modem.
Unfortunately, insufficient space was allowed to include
the full study results, but they are summarized below. A
detailed presentation can be found in [5].

Given recent advances in CPU processing power, the
impact of a soft modem on the throughput of the system is
reasonable—we measured a 14.7% sustained CPU load
on a 450 MHz Pentium II. Because soft modems need
periodic real-time computations on the host CPU in order
to maintain line connection and transmit data, a mecha-
nism ensuring predictable scheduling is essential.

While the soft modem’s 14.7% CPU load is not high
per se, a problem with the vendor version is that all of this
time is spent in interrupt context. Once connected, the
execution of the interrupt handler typically lasts 1.8ms
with a repeatable worst case of 3.3ms during connection.

This study shows that signal processing in interrupt
context is not only unnecessary but also detrimental to the
predictability of other computations in the system. While
DPCs and priority-based scheduling cause milder side
effects upon the rest of the system, they nevertheless suf-
fer from some of the same drawbacks as the original ver-
sion. This study supports the conclusion that CPU Reser-
vations provide a good answer to the predictability prob-
lems that can be caused by a soft modem.

5. Audio Player Application Study
5.1 Experimental Setup

All audio application performance results were
measured on a dual-processor 333 MHz Pentium II PC
with 128MB of memory. Although the machine normally
uses both processors, all results reported in this study
were run in uniprocessor mode.

3

5.2 Windows Media Player
Windows Media Player plays a variety of streaming

audio and video file formats such as MP3, WAV, AVI,
and MPEG-2. All experiments reported in this section
were performed while playing an MPEG-2 layer 3 (MP3)
audio file under Media Player version 6.4. We chose an
audio application because the human ear is very sensitive
to anomalies in audio playback; in this domain we expect
essentially flawless real-time performance.

The Windows Media Player is structured as a group
of cooperating threads that performs tasks such as reading
encoded data from disk, decoding the data and sending it
to a sound driver, and updating the graphical front-end.
5.2.1 Windows Audio Architecture

Windows 98, Windows ME, and Windows 2000
contain the Windows Driver Model audio architecture [6]
that performs mixing functions in software, so that a po-
tentially unlimited number of software sound sources can
be converted into a single stream for delivery to sound
hardware. The kernel audio mixer has tight end-to-end
latency requirements since applications may generate
sounds in response to user actions. If the delay between
action and sound is longer than a few tens of millisec-
onds, they are not perceived as being simultaneous.

The kernel mixer uses three or four 10ms buffers.
Consequently, if the kernel mixer thread (which should
run every 10ms at priority 24) is not scheduled for about
30ms, audible glitches will follow. We added code to the
kernel mixer causing it to emit a “kernel mixer starvation
event” to the perf kernel log when it ran out of data; these
appear in some of our execution traces (Figures 5-2, 5-4,
and 5-5). This was useful because the kernel mixer is the
most latency sensitive part of the Media Player, and sound
glitches were virtually guaranteed to happen when it
starved. However, while kernel mixer starvation was a
sufficient condition for glitches, it was not necessary.
5.2.2 Media Player Thread Structure

Period (ms) Priority Name
10 24 Kernel Mixer
45 8 User Interface
100 15 Multimedia Timer
100 9 MP3 Decoder
500 8 Unknown
2000 8 Disk Reader

Table 5-1: Media Player thread structure

Media Player creates five threads while playing an
MP3. Four of these threads and a kernel mixer thread will
concern us for the next few sections.

Kernel mixer thread: The kernel mixer thread runs
every 10ms at priority 24. It is latency-sensitive, and will
cause sound glitches if starved for more than 25-30ms.

User interface thread: A priority 8 Media Player
thread runs every 45ms in order to control and update the

Media Player’s user interface. It is always awakened by a
priority 19 CSRSS thread. (CSRSS is a system server
that, among other jobs, performs console I/O.) When this
thread is starved, Media Player only updates its GUI
every three seconds or so, when the Windows 2000 star-
vation avoidance logic boosts its priority.

Timer thread: A multimedia timer thread runs every
100ms at priority 15. It awakens the MP3 decoder thread.

MP3 Decoder thread: A priority 9 Media Player
thread runs every 100ms. Most of the Media Player’s
CPU time is spent in this thread decoding MP3 data. It is
not very latency-sensitive—after being starved briefly, it
runs for long enough to catch up when next scheduled.

Disk I/O thread: A priority 8 thread wakes up every
2000ms in order to read MP3 data from disk.

5.3 Audio Study Experiments Run
Our testing strategy was to listen to an MP3 audio

stream using the Windows Media Player under various
conditions. For purposes of this experiment, we consider
the Media Player to be working if there were no audible
glitches or detected kernel mixer buffer starvations during
a 1-minute period. Although we report only on a single
trial of each experiment, we repeated them enough times
to verify that the results reported are typical.

We chose to use audible glitches as our principal ap-
plication quality metric because some Media Player tasks
have enough internal buffering that there is not always a
strong correspondence between missed task deadlines and
degradation in audio quality. Therefore, number of missed
deadlines, average task lateness, and other traditional met-
rics would not accurately measure what we are actually
interested in: the relationship between scheduling predict-
ability and perceived application quality.

We modeled contention with CPU intensive applica-
tions by writing a simple program that spins at a given
priority while the Media Player is running. Table 5-2 lists,
for each experiment, the conditions under which Media
Player was run, and the resulting behavior.

Ex-
peri
ment
#

Com-
petitor
Thread
Priority

Decoder
Thread
Reser-
vation

Kernel
Mixer
Thread
Reser-
vation

Audible
Glitches

Kernel
Mixer
Starva-
tions
Detected

1 - - - 0 0
2 8 - - 0 0
3 10 - - many many
4 9 - - 4 many
5 10 40/1024 - 4 many
6 10 40/1024 1/16 0 0
7 10 20/512 - 0 0
8 10 1/16 - 0 0
9 9 1/16 - 1 0

Table 5-2: Experiments run

4

Experiment 1: No competitor—Media Player run-
ning by itself. With no contention everything worked fine.

Experiment 2: Priority 8 competitor. Result: It
works fine. Explanation: The priority 8 Media Player
threads do not need much CPU time, so operating with a
competitor at the same priority presents no problem.

Experiment 3: Priority 10 competitor. Result: The
Media Player doesn’t work at all. Only short bursts of
music are heard every 5 seconds or so. Explanation: Sev-
eral important Media Player threads run at priorities less
than 10; these are almost completely starved by the prior-
ity 10 competitor and only get to run every 5 seconds or
so when the Windows 2000 starvation avoidance logic
boosts them to a high priority for a few quanta.

Experiment 4: Priority 9 competitor. Result: There
were three ~0.5s dropouts and one 4-second dropout. 373
kernel mixer starvations were logged. Explanation: bugs
in Media Player, which we discuss in Section 5.4.2,
caused the dropouts.

Experiment 5: Priority 10 competitor. Media Player
decoder thread has a reservation of 40ms/1024ms. Result:
There were 3 barely audible glitches and one obvious one.
Explanation: The kernel mixer starves several times be-
cause, during its reserved time, the decoder thread runs
for long enough to make the kernel mixer thread miss its
deadlines. This is discussed in Section 5.4.2.

Experiment 6: Priority 10 competitor. Media Player
decoding thread has a reservation of 40ms/1024ms; ker-
nel mixer thread has a reservation of 1ms/16ms. Result: It
works fine. Explanation: There are two effects here. One
is that because of the reservation, the kernel mixer cannot
be starved by a boosted Rialto/NT thread. The other is
that the kernel mixer reservation causes the reservation
for the decoder thread to be fragmented—this means that

it receives CPU time more evenly than when it is the only
reservation in the system.

Experiment 7: Priority 10 competitor. Media Player
decoding thread has a reservation of 20ms/512ms. Result:
It works fine. Explanation: The decoder thread runs often
enough that it doesn’t run very long at priority 30, and
therefore doesn’t interfere with the priority 24 kernel
mixer thread.

Experiment 8: Priority 10 competitor. Media Player
decoding thread has reservation of 1ms/16ms. Result: It
works fine. Explanation: Same as previous experiment.

Experiment 9: Priority 9 competitor. Media Player
decoding thread has a reservation of 1ms/16ms. Result: 1
audible glitch. Explanation: The Media Player decoder
thread fails to decode enough data because of a bug in the
Media Player; we discuss this in Section 5.4.2.

5.4 Analysis of Audio Study Results
In general, the results of our experiments were as ex-

pected: in the presence of contention the priority-based
scheduler did not give enough CPU time to the Windows
Media Player, but when application threads were given
appropriate reservations they were able to meet their
deadlines. However, we also encountered some interest-
ing and unexpected situations.
5.4.1 Results We Expected

Although experiment 1 generated no surprises, we
include its execution trace as a baseline in Figure 5-1.
Note that the CPU spends most of its time running the
idle thread, the kernel mixer thread runs every 10ms, and
the Media Player threads have a regular timing structure.

Experiment 3 also offered few surprises. In competi-
tion with a priority 10 thread, the Media Player threads
were not able to run most of the time. Figure 5-2 shows a
long stream of starvation messages that are interrupted

25000 25500 26000 26500 27000
Time (ms)

11: Explorer thread 736
8: System thread 824
8: System thread 48

12: System thread 40
13: System thread 28
16: System thread 60
23: System thread 64

15: CSRSS thread 728
19: CSRSS thread 180

0: Idle Thread
8: Media Player Disk Reader

8: Media Player Unknown
9: Media Player mp3 Decoder

15: Media Player Multimedia Timer
8: Media Player User Interface

24: Kernel Mixer

Event Logged or
Thread Priority and Name

Figure 5-1: Execution trace gathered during experiment 1: Media Player with no contention

5

just after 26 seconds into the run when the starvation
avoidance logic boosts the priority of the starved Media
Player threads—they run briefly and then resume starv-
ing. The sound that this experiment produced was a long
sequence of clicks and pops with brief bursts of music
when the application was able to run.

It is interesting to compare the pattern of thread exe-
cutions in Figure 5-3 (experiment 8) with the ones in Fig-
ure 5-1 (experiment 1). The orderly time-slices are gone,
replaced with an interference pattern between the 100ms
“natural” period of the MP3 decoder thread and the
1ms/16ms reservation that we gave it. The multimedia
timer expirations are still orderly. This is because Win-
dows multimedia timers run at priority 15 and therefore
always immediately preempt the competitor thread. The
timer thread runs only long enough to awaken the decoder

thread, which runs in several subsequent time-slices since
the 1ms slots are not individually long enough for it to
complete its work.
5.4.2 Results We Did Not Expect

By giving the Media Player decoding thread a reser-
vation, we were able to ensure that it was allocated suffi-
cient processing time. In experiment 5, we gave it a reser-
vation of 40ms/1024ms—this is much longer than its
normal period, but short enough that it was able to keep
its buffer of decoded data from becoming empty. How-
ever, each time it ran, it ran for so long (while boosted to
priority 30 by Rialto/NT) that it starved the kernel mixer
thread! This shows that giving reservations to some real-
time threads and not others is potentially dangerous: it is
possible to make the situation worse instead of better.

25000 26000 27000 28000
Time (ms)

12: System thread 32
13: System thread 24
15: System thread 48

15: System thread 808
16: System thread 60
23: System thread 64

15: Services thread 300
14: CSRSS thread 732
19: CSRSS thread 180
10: Competitor Thread

8: Media Player Unknown
9: Media Player mp3 Decoder

15: Media Player Multimedia Timer
8: Media Player User Interface

24: Kernel Mixer
Kernel Mixer Starvation

Event Logged or
Thread Priority and Name

Figure 5-2: Execution trace gathered during experiment 3: Media Player being starved by a priority 10 competitor

20000 20200 20400 20600 20800 21000
Time (ms)

12: System thread 636

14: System thread 24

16: System thread 60

23: System thread 64

15: Services thread 444

15: LSASS thread 232

14: CSRSS thread 732

19: CSRSS thread 184

10: Competitor Thread

8: Media Player Unknown

9: Media Player mp3 Decoder

15: Media Player Multimedia Timer

8: Media Player User Interface

24: Kernel Mixer

Event Logged or
Thread Priority and Name

Figure 5-3: Execution trace from experiment 8: Media Player decoder thread has a 1ms/16ms reservation, while com-
peting with a priority 10 thread

6

In experiments 4 and 9, buffer under-runs or audio
glitches were detected even when we would have ex-
pected Media Player to work. These can be traced to at
least two bugs in the Media Player implementation. The
more interesting bug is a priority inversion: the kernel
mixer thread and the user-level decoding thread both fre-
quently get or set the current position in the audio stream;
the stream data structure is protected by a blocking mutex.
If the lower-priority decoder thread is preempted while
holding this lock, the kernel mixer thread will block on
the mutex when it next tries to enter the critical section.

Figure 5-4 shows an example taken from experiment
4, in which the decoder thread (at priority 9) competes for
the CPU with a priority 9 spinning competitor thread. A
priority inversion begins around 14324 milliseconds into
the run when the competitor thread preempts the Media
Player MP3 decoder thread while it is holding the lock it
shares with the kernel mixer thread. At around 14325, the
kernel mixer thread wakes up and blocks on the mutex
almost immediately; it subsequently misses its next two
invocations—this causes a buffer under-run to occur at
time 14345. Finally, around time 14353 the competitor
thread’s quantum expires and the decoder thread gets to

run. It soon releases the lock and is preempted by the ker-
nel mixer thread, which runs briefly and then sleeps
again, allowing the decoder thread to continue.

Since the decoder thread and the competitor thread
are both at priority 9, they preempt each other often, of-
fering many opportunities for the inversion to occur. In
fact, it happened three times during our 1-minute test. The
Windows NT performance group worked around this in-
version by increasing threads’ priorities when they grab
the lock that is shared with the kernel mixer thread—this
is a one-shot implementation of the priority ceiling proto-
col. We did not use this workaround during our experi-
ments because we wanted to show that CPU Reservations
permit an alternative workaround to the priority inversion:
when we give a fine-grained reservation to the decoder
thread (say 1ms/16ms, as in experiment 8), this bounds
the length of the inversion to 16ms—not long enough to
be harmful. This can be seen in Figure 5-3: the kernel
mixer thread misses an execution slot many times, but it
never misses more than one slot. This is consistent with a
priority inversion that can easily exceed 10ms but will
never reach 20ms. We believe that the fine-grained CPU
Reservation in this experiment that rendered the inversion

14310 14320 14330 14340 14350 14360 14370
Time (ms)

12: System thread 32

19: CSRSS thread 180

9: Competitor Thread

9: Media Player mp3 Decoder

15: Media Player Multimedia Timer

24: Kernel Mixer

Kernel Mixer Starvation

Event Logged or
Thread Priority and Name

Figure 5-4: Execution trace from experiment 4: a priority inversion: thread 708 is blocking the higher priority thread 772
between times 14325 and 14353

56000 56500 57000 57500 58000
Time (ms)

12: System thread 32

13: System thread 28

15: System thread 48

16: System thread 60

23: System thread 64

14: CSRSS thread 732

19: CSRSS thread 180

9: Competitor Thread

8: Media Player Unknown

9: Media Player mp3 Decoder

15: Media Player Multimedia Timer

8: Media Player User Interface

24: Kernel Mixer

Kernel Mixer Starvation

Event Logged or
Thread Priority and Name

Figure 5-5: Execution trace from experiment 4 showing a deadlock

7

harmless also triggered the inversion much more often by
increasing the number of preemptions (and hence, the
probability of a preemption while the shared mutex was
held). We do not have a good understanding as to why the
priority inversion did not cause starvations in experiment
7; perhaps the were few enough preemptions caused by a
priority 10 competitor (as opposed to priority 9) that the
inversion just did not manifest itself.

Another Media Player bug that we observed was a
circular wait among Media Player threads. Figure 5-5
shows this occurring: around 56300-56400 milliseconds
into the run the Media Player user interface, multimedia
timer, and decoder threads all block, each waiting for one
of the other threads to wake it up. About two seconds later
the kernel mixer runs out of data and begins to continu-
ously starve. The deadlock is broken 4 or 5 seconds later
when a timed wait expires, and things return to normal for
a while. We never saw this deadlock occur on an un-
loaded system, but the presence of a competitor thread
changed the sequence of events, exposing the bug.

These two bugs perfectly illustrate the difficulty of
writing correct programs in the presence of many cooper-
ating and synchronizing threads at different priorities.

5.5 Investigative Methods
Rather than using the Media Player source code, we

took a reverse-engineering approach to understanding
how it works, using the perf kernel. This would have been
a bad idea if we had wanted to understand its algorithms.
However, we were interested in its dynamic timing be-
havior—something that is readily observable by watching
when threads execute, but which would have been diffi-
cult to discern from the source code. In particular, when
things went wrong and there were priority inversions and
deadlocks, looking through the perf kernel dumps lead us
directly to the problems rather than forcing us to infer
what had happened from secondary clues.

5.6 Audio Player Conclusions
Without CPU Reservations, the Windows Media

Player works only when the priority-based timesharing
scheduler happens to give its threads enough CPU time to
meet their requirements. We believe that CPU reserva-
tions offer a better solution than relying on threads in an
open system to spend little time running at priorities
higher than the default priority. By having applications
(or software running on their behalf) explicitly make their
requirements known to the system, a deterministic sched-
ule can be constructed to meet their needs.

6. Related Work
While significant effort has been put into adding real-

time extensions to commodity operating systems, we are
not aware of any comprehensive study of commonly used
applications requiring real-time execution on such sys-
tems. We believe that such application studies will con-
tribute to understanding both the strengths and the weak-

nesses of particular real-time solutions when applied to
commodity operating systems, providing much needed
input to their designers and engineers.

Predictable thread scheduling does not ensure pre-
dictable application execution if portions of the system
not under control of the scheduler can introduce long la-
tencies; [1] and [3] study the sources of and quantify the
degree of this potential problem.

7. Further Research
Our studies are one step in understanding the benefits

to applications of using real-time schedulers on general-
purpose operating systems. Soft modems and digital audio
are ideal applications for evaluating real-time system ab-
stractions due to their precise timing requirements.

We are interested in investigating the effectiveness of
using Rialto/NT to increase the predictability of software
DVD movie playback. Unlike audio playback and soft-
ware modems, this application consumes a substantial
fraction of modern CPUs (unless there is hardware accel-
eration) and so is likely to cause overload and contention.

Finally, this research could be extended to the newly
proposed software-based Digital Subscriber Line (soft
DSL) [9]. While CPU requirements for soft DSL are
much higher, they possess some of the same real-time
characteristics as soft modems, making them ideal candi-
dates for understanding the benefits and limitations of
real-time schedulers.

8. Contributions
In summary, our contributions have been:

• To show that a software modem driver that was de-
signed to run CPU-intensive signal processing in in-
terrupt mode can be modified to run in a DPC, in a
thread scheduled by Windows 2000, and in a thread
scheduled by Rialto/NT. The versions of the driver
that run in thread context are less detrimental to the
predictability of other activities running in the system
than the original version and the DPC version. Fur-
thermore, this benefit was achieved without signifi-
cant loss of modem throughput.

• To study the sensitivity of soft modem performance
to the amount and period of CPU reservations. This
study is useful not only to understand the perform-
ance characteristics of a software modem, but also as
a demonstration of an analysis that should be per-
formed for other real-time applications. This analysis
is needed in order to determine (1) the smallest
amount of reserved CPU time and (2) the coarsest pe-
riod at which that amount of time must be reserved
that allows the application to generate its full value.
Reserving a larger amount than this wastes resources,
and reserving at a smaller period will increase the
number of preemptions in the system, increasing
context switch overhead and reducing cache effec-

8

tiveness, and therefore reducing the amount of useful
work that can be performed.

• To show that the predictability of a complex GUI-
based application, the Windows Media Player, can be
increased by assigning CPU reservations to its most
time-sensitive threads. In the absence of CPU reser-
vations, Windows Media Player only works when
other applications do not happen to spend much time
running above priority 8 (the default thread priority
in Windows 2000).

• To show that CPU reservations can be applied to a
complex, multithreaded application without modify-
ing the application (and in fact, without even restart-
ing it). Rather than understanding this large applica-
tion (that uses several layers of middleware and de-
vice drivers) at the source level, we gathered enough
information to apply CPU reservations by observing
its run-time behavior using an instrumented Windows
2000 kernel.

9. Conclusions
We have performed two case studies, each of which

involved applying CPU reservations to an existing real-
time application under Windows 2000. The first applica-
tion is a low-level system service that provides signal-
processing for a software modem. The second is a high-
level GUI-based application that is the default player for
streaming audio and video in Windows 2000 (however,
the most hard real-time task involved in playing audio, the
kernel mixer, is again a low-level system service).

We found two main benefits to studying real applica-
tions. First, there was no need to ground-truth a simula-
tion or second-guess application characteristics: we used
the same complex applications that currently run on mil-
lions of consumer systems. Second, we were able to use
real performance metrics like modem throughput and per-
ceived audio quality rather than synthetic metrics such as
number of missed deadlines or mean lateness that, in a
soft real-time environment, may not be strongly correlated
with the value generated by applications.

In conclusion, we believe that in an open system, it is
important to be able to specify application requirements in
absolute units (such as amounts and periods) rather than
in relative units such as priorities or shares, for which
optimal values cannot be calculated without global system
knowledge. The relative ease with which we applied CPU
reservations, which allow requirements to be specified in
absolute units, to these very different applications speaks
well for Rialto/NT and for the overall applicability of
CPU reservations to periodic tasks in general-purpose
operating systems.

Acknowledgments
The authors would like to thank Patricia Jones for her

helpful comments on drafts of this paper.

References
[1] Erik Cota-Robles and James P. Held. A Comparison of

Windows Driver Model Latency Performance on Windows
NT and Windows 98. In Proceedings of the Third USENIX
Symposium on Operating Systems Design and Implementa-
tion (OSDI ’99), New Orleans, LA, pages 159-172, Febru-
ary 1999.

[2] Michael B. Jones, Daniela Roşu, Marcel-Cătălin Roşu.
CPU Reservations and Time Constraints: Efficient, Pre-
dictable Scheduling of Independent Activities. In Pro-
ceedings of the 16th ACM Symposium on Operating System
Principles, St-Malo, France, pages 198-211, October 1997.

[3] Michael B. Jones and John Regehr. The Problems You’re
Having May Not Be the Problems You Think You’re
Having: Results from a Latency Study of Windows NT. In
Proceedings of the Seventh Workshop on Hot Topics in
Operating Systems (HotOS-VII), Rio Rico, Arizona, March
1999.

[4] Michael B. Jones and John Regehr. CPU Reservations and
Time Constraints: Implementation Experience on Windows
NT. Michael B. Jones and John Regehr. In Proceedings of
the Third USENIX Windows NT Symposium, Seattle, WA,
pages 93-102, July 1999.

[5] Michael B. Jones and Stefan Saroiu. Predictability Re-
quirements of a Soft Modem. In Proceedings of the ACM
SIGMETRICS Conference on Measurement and Modeling
of Computer Systems, Cambridge, MA, June 2001.

[6] WDM Audio Drivers for Windows 2000. Microsoft Corpo-
ration, 1999. http://www.microsoft.com/hwdev/devdes/
wdmaudio.htm.

[7] Jason Nieh, James G. Hanko, J. Duane Northcutt, and Ger-
ald Wall. SVR4 UNIX Scheduler Unacceptable for Multi-
media Applications. In Proceedings of the Fourth Interna-
tional Workshop on Network and Operating System Sup-
port for Digital Audio and Video. Lancaster, U.K., Novem-
ber 1993.

[8] David A. Solomon and Mark Russinovich. Inside Microsoft
Windows 2000, Third Edition. Microsoft Press, 2000.

[9] Mike Tramontano. The DSL Market is Going Soft. In-
ter@ctive Week Online, Ziff Davis, July 17, 2000.
http://www.zdnet.com/intweek/stories/news/
0,4164,2604854,00.html.

