
cTPM: A Cloud TPM for Cross-Device Trusted Applications
Chen Chen†, Himanshu Raj, Stefan Saroiu, and Alec Wolman

Microsoft Research and †CMU

Abstract:
Current Trusted Platform Modules (TPMs) are ill-

suited for cross-device scenarios in trusted mobile ap-
plications because they hinder the seamless sharing of
data across multiple devices. This paper presents cTPM,
an extension of the TPM’s design that adds an addi-
tional root key to the TPM and shares that root key with
the cloud. As a result, the cloud can create and share
TPM-protected keys and data across multiple devices
owned by one user. Further, the additional key lets the
cTPM allocate cloud-backed remote storage so that each
TPM can benefit from a trusted real-time clock and high-
performance, non-volatile storage.

This paper shows that cTPM is practical, versatile,
and easily applicable to trusted mobile applications. Our
simple change to the TPM specification is viable because
its fundamental concepts – a primary root key and off-
chip, NV storage – are already found in the current spec-
ification, TPM 2.0. By avoiding a clean-slate redesign,
we sidestep the difficult challenge of re-verifying the se-
curity properties of a new TPM design. We demonstrate
cTPM’s versatility with two case studies: extending Pas-
ture with additional functionality, and re-implementing
TrInc without the need for extra hardware.

1 Introduction
People are increasingly relying on more than one mo-

bile device. Recent news reports estimate that: the av-
erage US consumer owns 1.57 mobile devices [8]; Sin-
gapore has 7.8 million mobile devices, which translates
to 150% mobile penetration [36]; and the average Aus-
tralian will own five mobile devices by 2040 [37]. Given
this trend, mobile platforms are recognizing the need for
“cross-device” functionality that automatically synchro-
nizes photos, videos, apps, data, and even games across
all devices owned by a single user.

Simultaneously, laptops, smartphones, and tablets
are increasingly incorporating trusted computing hard-
ware. For example, Google’s Chromebooks use TPMs
to prevent firmware rollbacks and to store and attest
user’s data encryption keys [11]. Windows 8 (on tablets
and phones) offers BitLocker full-disk encryption [21]
and virtual smart cards [23] using TPMs. Recent re-
search leverages TPMs to build new trusted mobile ser-
vices [30, 32, 9, 17, 14], new trusted cloud services [31],
and new operating systems [33].

Unfortunately, these two trends may be at odds:

trusted hardware, such as the trusted platform module
(TPM), does not provide good support for cross-device
functionality. By design, TPMs offer a hardware root-
of-trust bound to a single, standalone device. TPMs
come equipped with encryption keys whose private parts
never leave the TPM hardware chip, reducing the pos-
sibility those keys may be compromised. The tension
between single-device TPM guarantees and the need for
cross-device sharing makes it difficult for trusted appli-
cations to cope with multi-device scenarios. For exam-
ple, Pasture [14], a TPM-based secure offline data ac-
cess system that can be used for movie rentals, limits
all its guarantees to one device due to TPM limitations.
Similarly, Windows TPM-based virtual smart cards are
single-device only – users have to provision and renew
their credentials separately on each device they own.

Support for cross-device sharing requires altering the
TPM design, which raises the following question: Can
a small-scale TPM design change overcome these limi-
tations? While a clean-slate TPM re-design could pro-
vide a variety of additional security properties, there are
two pragmatic reasons why a smaller change is prefer-
able. First, TPMs have undergone a decade of API and
implementation revisions to reduce the likelihood of vul-
nerabilities. A clean-slate re-design would demand con-
siderable time and effort to provide a mature codebase.
Second, TPM manufacturers would more willingly adopt
smaller and simpler changes.

This paper proposes a single, simple design change
to the TPM, called cTPM, that overcomes the limitations
noted above by equipping the TPM with one additional
root key that is shared with the cloud. This key lets
trusted applications overcome their cross-device limita-
tions with the cloud’s assistance. It ensures that the cloud
can control only a portion of TPM resources: those en-
crypted with the shared key. The cloud remains restricted
from accessing the TPM resources protected by all other
device-local, TPM root keys. We verified the security of
the communication protocol between the TPM and the
cloud using a protocol verifier [3].

The new key also lets cTPM allocate non-volatile
(NV) storage in the cloud. The cTPM’s remote storage
enables the cloud to provide a trusted, synchronized and
highly accurate source of time by periodically recording
the time to remote storage. Today’s TPMs lack a trusted
source of time (i.e., a trusted real-time clock). Although
the TPM provides an internal trusted timer, this timer

Remote NV storage

NV index values
clock

crypto

TPM chip

NV storage

Keys, persistent state, NV index values

µcontroller RAM timer

OS + applications

CRK
CRK

Figure 1. Diagram of cTPM architecture.

alone is insufficient to build a trusted real-time clock.
Finally, the cTPM’s remote cloud storage offers TPM
applications large amounts of NV storage and lets them
perform frequent NV writes. In contrast, TPM chips can-
not offer such resources because they suffer from serious
resource and performance limitations. These limitations
drastically reduce the use cases for TPMs in both mobile
and server scenarios, and have led researchers investigate
alternatives to TPMs such as trusted devices whose stor-
age offers increased performance [16]. Figure 1 shows a
diagram of cTPM’s architecture.

We demonstrate the benefits of cTPM by presenting
two case studies. First, the cloud’s ability to manage a
portion of the TPM’s state provides Pasture [14] with
additional functionality. With cTPM, Pasture can ex-
tend its guarantees across all devices owned by a single
user and can support server-side revocation, an opera-
tion not offered by the original Pasture protocol. Fur-
ther, cTPM’s trusted clock enables Pasture to grant data
access at a specific time in the future (e.g., make this
movie available on Friday at midnight). Second, the
high-performance nature of cTPM’s remote storage im-
proves the performance of applications that require fre-
quent writes. We re-implement TrInc [16] without the
need of extra hardware (TrInc requires a smartcard).

2 Background
TPM Primer. At manufacturing time, TPM chips are
provisioned with a couple of public/private key-pairs for
cryptography (i.e., digital signatures and asymmetric en-
cryption). The TPM design guarantees that the private
keys of these root key-pairs never leave the TPM, thereby
reducing the possibility of compromise. TPMs can also
generate public/private key-pairs with private keys stored
in the TPM’s NV storage. However, TPMs have limited
NV storage and thus cannot store many such key-pairs.

TPMs are equipped with a set of platform configura-
tion registers (PCRs) guaranteed to be reset upon a com-
puter reboot. PCRs are primarily used to store finger-
prints of a portion of the software booting on a computer
(e.g., the BIOS, firmware, and OS bootloader); Chrome-
books [11] and BitLocker [21] use PCRs in this way.

TPMs can perform cryptographic algorithms for en-
crypting, authenticating, and attesting data. Implement-
ing functionality beyond that offered by TPMs in a

trustworthy manner can be done using secure execu-
tion mode, a form of hardware protection offered by
x86 CPUs. Intel’s secure execution architecture, called
Trusted Execution Technology (TXT), offers a runtime
environment strongly isolated from other software run-
ning on the computer.

The TPM spec does not provide minimum perfor-
mance requirements, and, as a result, today’s commod-
ity TPMs are slow and inefficient [19, 14]. TPM vendors
have little incentive to use faster but more expensive in-
ternal parts when building their TPM chips. This perfor-
mance handicap has limited the use of TPMs to scenarios
that do not require fast or frequent operations. However,
no technological constraints prevents a hardware vendor
from building a high-performance TPM.

Describing the full functionality of a TPM is beyond
the scope of this paper. Ryan [29] and Challener et al. [5]
provide good overviews of how TPMs work, although
the TPM specs [39] remain the authoritative source for a
full description of TPM functionality.

TPM 2.0. The Trusted Computing Group (TCG) is
currently defining the specification for TPM version
2.0 [38], the next version of the TPM. TPM 2.0 of-
fers several improvements, including a more complete
set of cryptographic algorithms, i.e., SHA-2 and ellip-
tic curve cryptography (ECC) in addition to SHA-1 and
RSA offered by TPM 1.2. TPM 2.0 also provides more
PCRs and supports more flexible authorization policies
that control access to TPM-protected data. Finally, TPM
2.0 provides a reference implementation, while TPM 1.2
provides only an open-source implementation developed
by a third party [10]. A complete list of differences be-
tween the two versions is provided by the TCG [38].

In TPM 2.0, three entities can control the TPM’s re-
sources: the platform manufacturer, the owner, and the
privacy administrator. The TPM 2.0 spec control do-
main refers to the specific resources that each entity con-
trols. The platform firmware control domain overseen
by the platform manufacturer updates the TPM firmware
as needed. The owner control domain protects keys and
data on behalf of users and applications. The privacy ad-
ministrator control domain safeguards privacy-sensitive
TPM data. This role can be played by anyone; for exam-
ple, in an enterprise the IT department acts as the privacy
administrator for all its machines’ TPMs.

Each TPM 2.0 control domain has a primary seed,
which is a large, random value permanently stored in
the TPM. Primary seeds are used to generate symmet-
ric/asymmetric keys and proofs for each control domain.

3 Motivation
This section first describes how the additional TPM

functionality can be implemented at present and why this

approach is problematic. We then discuss specific fea-
ture limitations of existing TPMs for cross-device shar-
ing, trusted clock, and NV storage. Finally, we describe
how cTPM addresses each limitation.

3.1 Secure Execution Mode Limitations

Extending the TPM functionality can be done at
present by leveraging its extensibility mechanism, which
is a secure execution mode integrated into the system
CPU. Both Intel’s TXT and AMD’s SEM are extensibil-
ity mechanisms for the TPM – they enable the develop-
ment of trusted computing features not easily achieved
solely through the built-in TPM commands. Unfortu-
nately, major stumbling blocks prevent a secure execu-
tion mode from providing needed features. The first
stumbling block is performance; to use the secure exe-
cution mode, CPU interrupts must be disabled, and, in
a multiprocessor system, only one CPU core can be en-
abled. Entering this mode requires the OS to save its
state and suspend execution, operations that are relatively
heavyweight. Second, none of today’s smartphones and
tablets includes a CPU that supports TXT or SEM; these
features are provided only on laptops and desktops sold
to enterprises. Third, even if they did, using secure ex-
ecution mode is remarkably difficult. It requires support
from the motherboard chipset, BIOS , and, in the case of
Intel’s TXT, an additional chipset-specific authenticated
code module. Also, once in secure execution mode, the
code only has access to a “barebones” machine without
any I/O, OS, or library support. Building such support
without relying on interrupts may be challenging. We
know of no production software that uses secure execu-
tion mode1.

Section 6 will describe how cTPM solves this prob-
lem in a simpler way that does not require the use of se-
cure execution mode. Despite cTPM’s benefits, however,
changing the TPM design raises a legitimate concern:
Does the verification cost of introducing TPM changes
outweigh the additional benefits of the new design? Al-
though we cannot provide a reliable estimate of these
costs, we deliberately kept our design changes minimal.
The cTPM design affects only the TPM commands that
access NV data (to indicate whether operations are local
or remote) and adds three TPM commands that synchro-
nize data between the device TPM and the cloud TPM.
The vast majority of the TPM logic remains the same.

3.2 Limitation 1: Cross-Device Data Sharing

Current TPM abstractions offer guarantees about one
single computer, and the TPM’s hardware protection

1See the Flicker [19] Web page for details on the difficulty of
finding the appropriate hardware and software to use SEM (https:
//sparrow.ece.cmu.edu/group/flicker.html).

mechanisms do not extend across devices. For example,
the TPM owner domain provides an isolation mechanism
for only a single TPM. When a new owner takes owner-
ship of the TPM, they cannot access the previous owner’s
TPM-protected secrets. When the same user owns two
different TPMs (on two different devices), the owner do-
mains of each TPM remain isolated and cannot jointly
offer hardware-based protection of the user’s keys and
data. Thus, mobile services cannot rely on TPMs alone
to enable secure data sharing across devices.

3.2.1 Secure Key Exchange

To better illustrate these challenges, we now describe
in-depth how to perform secure key exchange between
two TPM-equipped mobile devices, a critical building
block in enabling secure data sharing across devices. Key
exchange is a common bootstrapping step used in secu-
rity protocols that provide authentication and encryption,
such as SSL, SSH, VPNs, etc. The TPM offers hardware-
protection for cryptographic keys. Thus, even if a sys-
tem were compromised, the key itself would remain pro-
tected. A desirable property for secure key exchange be-
tween two TPM-equipped devices is the establishment of
a secure communication channel even when both are in-
fected by malware. This requires TPMs to perform the
cryptographic steps for key exchange without leaking the
key to the malware.

Unfortunately exchanging a key securely between two
parties is notoriously challenging in practice because of
the identity problem – one party needs to verify the cor-
rect identity of the other. One way to do this is to use a
public key infrastructure (PKI) where each party applies
to a certificate authority for a digital certificate, which
serves for others as a non-tamperable authentication of
identity.

Thus, the TPM specification does not directly provide
an implementation of any secure key exchange protocol.
Because TPMs lack the functionality of a key exchange
protocol (e.g., Diffie-Hellman), two TPMs can exchange
keys only by performing a one-time key migration from
one device’s TPM to another in the absence of malware.
Without either of these properties, malware could either
migrate the key to a malicious device or obtain a copy of
it during migration.

Figure 2 shows the pseudo-code a device must exe-
cute to generate a key that can be shared with another
device. This code requires use of the secure execution
mode (i.e., Intel’s TXT or AMD’s SEM) to reduce its
TCB and thereby reduce the likelihood of the presence
of malware. To ensure that key migration is a one-time
only operation, the code assigns a migration policy to the
key based on a secret (denoted by S in the pseudo-code).
Once S is destroyed, the key can no longer be migrated.

https://sparrow.ece.cmu.edu/group/flicker.html
https://sparrow.ece.cmu.edu/group/flicker.html

//Reduce the likelihood of malware.
1. Enter secure execution mode

//Create a shared key K. K is migrateable
//only by knowing a secret S.
2. Create symmetric key K
3. Create secret S
4. Set migration policy of K to a secret S

//Secure identity verification of device 2.
5. Verify identity of device 2

//Encrypt K with device 2’s public key. Secret S
//is needed for this operation.
6. Using S, create migrateable copy of K for device 2

//Permanently disable K’s ability to migrate.
7. Permanently destroy S

//Exit SEM and send encrypted K to device 2.
8. Leave secure execution mode
9. Send migrateable copy of K to device 2

Figure 2. Pseudo-code for secure key exchange.

3.3 Limitation 2: Trusted Clock

Today’s TPMs do not offer a trusted real-time clock.
Instead, the TPM combines a trusted timer with a secure,
non-volatile counter. For every tick received, the TPM
increments the value of a counter stored in memory. For
every n increments of this counter, the counter value is
persisted to the TPM’s NV storage. The TPM has an es-
timate of the timer’s frequency and thus has an approxi-
mate notion of time. However, this mechanism can keep
track of time only when the TPM is running (and not
when the platform is powered off). Because the counter
value is persisted only every n increments, this mecha-
nism does not even provide a guarantee of monotonicity.
Upon a reboot, the timer is rolled back to the last per-
sisted counter value violating monotonicity. The TPM’s
timer mechanism solely guarantees that as long as the
platform does not reboot, the timer will move forward.
As such, it can provide an approximate time-since-boot.

This mechanism is inadequate for offering real-time
guarantees that would be useful for offline content ac-
cess. For example, movie studios already charge a pre-
mium to make a movie available on home theaters on the
day of release. Although TPMs can provide offline ac-
cess securely, they cannot offer make the following movie
available for watching next Friday at midnight.

3.4 Limitation 3: NV Storage

The TPM’s NV storage is inadequate for applications
that require frequent writes or require large amounts
of trusted storage. For example, previous work [16]
has shown that a trusted module offering a mono-
tonic counter and a key solves several problems in dis-
tributed systems that stem from participants’ ability to
equivocate. Unfortunately, even though TPMs offer
this functionality, their implementation of NV storage
cannot meet the write frequency requirements of dis-

tributed systems protocols. The TPM specification dic-
tates the inclusion of monotonic counters, but the spec
requires only the ability to increment these counters at a
very slow place (e.g., once every five seconds), which
is insufficient for high-event applications such as net-
worked games [16]. Similarly, although the TPM spec-
ification mandates access-controlled, non-volatile stor-
age, most implementations provide only 1,280 bytes of
NVRAM [26]. These limitations have led researchers to
seek alternative designs for trusted devices [16].

3.5 How cTPM Overcomes These Limitations
To address these limitations, we propose cTPM, a

modification to the TPM design that includes an addi-
tional cloud control domain. This domain offers the same
functionality as the owner domain except that its primary
seed is also shared with the cloud. Sharing the seed with
the cloud allows both cTPM and the cloud to generate the
same cloud root key (see Section 5.3 for details). Com-
bining the cloud root key with remote storage lets cTPM:
1) better share data via the cloud, 2) have access to a
trusted real-time clock, and 3) have access to remote NV
storage that supports a large quantity of storage, and high
frequency writes.

cTPM’s design facilitates data sharing. The pre-
shared primary seed lets the cloud effectively act as a
PKI. The cloud and the device’s TPM can use this shared
secret to encrypt and authenticate their messages to each
other. The identity problem has now been “pushed” to
ensuring that the cloud primary seed is shared securely
between cTPM and the cloud. This initial sharing step
should be done at cTPM manufacturing time when the
cTPM’s three other primary seeds are provisioned.

The cloud domain also equips cTPM with a trusted
clock using a protocol similar to the Time Protocol de-
scribed in RFC 868 [27]. Once the clock value is ob-
tained from the cloud, cTPM uses its local timer to ad-
vance the clock. It has a global variable that dictates how
often it should re-synchronize the clock; the TPM owner
sets this variable whose value default is one day.

Finally, cTPM uses the cloud for additional NV stor-
age to overcome TPM NV storage limitations. There are
no limits on how much additional NV storage the cloud
can provide to a single cTPM. A portion of the physi-
cal cTPM chip’s RAM is thus allocated as a local cache
for the cloud-backed NV storage. The performance of
cTPM cloud-backed NV storage exceeds that of the TPM
because TPM NV accesses are no longer needed.

4 Trust Assumptions and Threat Model
4.1 Trusting the Cloud

All the new cTPM functionality associated with the
cloud domain assumes the cloud is trustworthy and

not compromised by malware. While everyone may
not agree with this assumption, cloud providers have
more incentives and resources to monitor and eliminate
malware than average users. Security-conscious cloud
providers could use secure hypervisors with a small
TCB [18], narrow interfaces [24], or increased protec-
tion against cloud administrators [40, 28].

Whether using a TPM or not, a cloud compromise
would already affect the security of a mobile service re-
lying on the cloud for its functionality. However, even
if the cloud were compromised, all secrets protected by
the TPM-specific control domains other than the cloud
domain would remain secure. For example, all device-
specific secrets protected in the owner’s control domain
(i.e., using TPM’s SRK) would remain uncompromised.

In the event that the cloud were compromised, cTPM
could no longer offer its security guarantees. To recover
would require changing the cloud seed (rekeying). To do
so, we see only two options: issue a new device to the
user, or implement a secure rekeying mechanism by vis-
iting an authorized store (e.g., a mobile operator store
such as AT&T) where the staff has specialized hard-
ware to perform a secure rekey. A rekey would also
be required whenever devices change ownership. While
cTPM lets the owner clear the device (i.e., erase its cloud
seed and all secrets protected by it), the new owner would
need to physically visit a store to obtain a new seed.

One alternative to the current cTPM design is to have
a trusted 3rd party offer the remote cTPM functionality
rather than the cloud. For example, the cTPM could be
offered by a TPM manufacturer rather than by the cloud.
However, we have not fully pursued such an alternative
cTPM design.

4.2 Threat Model

Our threat model resembles that of traditional TPMs:
all software attacks are in scope (including side-channel
attacks) because cTPM is isolated from the host platform
and can therefore provide its security guarantees even
if the host were compromised (e.g., infected with mal-
ware). However, physical attacks are out of scope. Such
attacks include decapsulation, microprobing, or focused
ion beaming the TPM chip [34], monitoring its internal
buses [35], or inserting traffic on the bus between the
CPU and the TPM. Furthermore, DoS attacks in which
the (untrusted) operating system or applications deny ac-
cess to the cTPM or to the cloud are out of scope. For
example, a TPM can be put in lockout mode if an appli-
cation attempts to “guess” an authorization value (e.g., a
“password”) to a secret it protects. During the lockout,
the TPM refuses to serve any requests to protected se-
crets made by any application. Once the lockout timeout
expires, the TPM exits lockout and can receive additional
requests. TPMs today are thus susceptible to DoS at-

tacks by applications that repeatedly attempt to guess the
wrong authorization values until the TPM enters lockout
and refuses to answer additional requests.

Another class of attacks specific to the cTPM stems
from our use of remote cloud storage. The (untrusted)
operating system could drop, corrupt, or re-order mes-
sages from the cloud. Even worse, it could delay mes-
sages from the cloud in an effort to serve stale data to
the TPM. All such attacks are in scope and addressed by
cTPM; for example, to ensure freshness, cTPM uses a
local timer to timeout any pending requests not yet ser-
viced.

cTPM has a dual relationship with the cloud. On one
hand, it trusts the cloud with any keys and data the cloud
stores in the cloud-backed NV storage. The cloud must
offer increased assurance that these keys are not com-
promised; for example, cloud-stored keys should be pro-
tected against malware, malicious administrators [31],
and side-channel attacks [41]. On the other hand, cTPM
has additional local NV storage that protects its own se-
crets from the cloud, as needed. We believe that this dual
relationship helps mobile services share data across de-
vices, yet does not place unlimited trust in the cloud. The
owner or privacy administrator can always use their own
control domain to protect secrets from the cloud.

5 cTPM High-Level Design
The cTPM design extends the TPM 2.0 by adding:

the ability to share a primary seed with the cloud, and
the ability to access cloud-hosted non-volatile (NV) stor-
age. This section describes the high-level design and
the challenges we encountered when implementing these
features. While our description is TPM 2.0-specific, our
changes could be equally applied to TPM 1.2.

5.1 Cross-Device Usage Model

Each device has a unique cTPM with a unique pri-
mary seed shared with the cloud and used to derive ad-
ditional keys (Section 5.3 describes the derived keys in
more depth). All devices registered with the same owner
have their keys tied to the owner’s credentials. The cloud
could then offer cTPM services that create a shared key
across all devices owned by the same user. For example,
when “bob@hotmail.com” calls this service, a shared
key is automatically provisioned to the cTPM on each
of Bob’s devices. This shared key can bootstrap the data
sharing scenarios described by this paper.

5.2 Architecture

cTPM consists of two different components, one run-
ning on the device and the other in the cloud. Both com-
ponents implement the full TPM 2.0 software stack with
the additional cTPM features. This ensures that all cloud

crypto

cTPM chip

NV
storage

µcontroller

RAM

timer

cTPM chip on mobile device

OS cTPM VM

NV
storage

crypto

CPU

RAM

clock

cTPM software running in VM

Figure 3. cTPM High-level Architecture.

operations made to the cTPM strictly follow TPM se-
mantics, and thus we do not need to re-verify their secu-
rity properties. On the device-side, the cTPM software
stack runs in the TPM chip, whereas the cloud runs the
cTPM software inside a VM. On the cloud-side, the NV
storage is regular cloud storage, and the timer offers a
real-time clock function. The cloud-side cTPM software
reads the local time upon every initialization and uses
NTP to synchronize with a reference clock. When run-
ning in the cloud, cTPM resources (e.g., storage, clock)
need not be encapsulated in hardware because the OS
running in the VM is assumed to be trusted. In contrast,
the device’s OS is untrusted, and thus the cTPM chip
itself must be able to offer these resources in isolation
from the OS. Figure 3 illustrates the high-level architec-
ture of the cTPM.

5.3 Shared Cloud Primary Seed

Upon starting, the local cTPM checks whether a
shared cloud primary seed is present. If not, it disables its
cloud control domain and all commands associated with
it. A cTPM is provisioned with a cloud primary seed via
a proprietary interface available only to the device man-
ufacturer.

The cTPM uses the cloud primary seed to generate an
asymmetric storage root key, called the cloud root key
(CRK), and a symmetric communication key, called the
cloud communication key (CCK). Both keys are derived
from the cloud primary seed. These key derivations oc-
cur twice: once on the device-side and once on the cloud-
side of the cTPM. Because the key derivations are de-
terministic, both the device and the cloud end up with
identical key copies. The CRK’s semantics are identical
to those of the storage root key (SRK) controlled by the
TPM’s owner domain. The CRK encrypts all objects pro-
tected within the cloud control domain (similar to how
SRK encrypts all objects within the owner domain). The
CCK is specific to the cloud domain, and it protects all
data exchanged with the cloud.

The cTPM uses the same mechanism to generate keys
as TPM 2.0. In particular, the generation of a primary key
from a seed is based on use of an approved key derivation
function (KDF). TPM 2.0 uses the KDF from SP800-
108 [25] in its specification.

We now examine the design challenges associated

TPM Caller cTPM Caller Cloud

Figure 4. The sequence of steps for issuing a syn-
chronous command (left) versus an asynchronous
command (right). The cTPM remains responsive to
other commands while the caller relays the blob to the
cloud.

with exchanging data between the local cTPM and the
cloud cTPM.

The Need for Secure Asynchronous Communication.
cTPM cannot directly communicate with the cloud. In-
stead, it must rely on the OS for all its communication
needs. Since the OS is untrusted, cTPM must protect
the integrity and confidentiality of all data exchanged be-
tween the cTPM and the cloud-backed storage, as well
as protect against rollback attacks. The OS is regarded
merely as an insecure channel that forwards information
to and from the cloud.

In addition to ensuring security, cTPM must support
asynchronous communication between the local cTPM
and the cloud. Today, the TPM is single-threaded, and all
TPM commands are synchronous. When a command ar-
rives, the caller blocks and the TPM cannot process any
other commands until the command terminates. Mak-
ing cTPM cloud communication synchronous would lead
to unacceptable performance. For example, consider is-
suing a cTPM command that increments a counter in
cloud-backed NV storage. This command would make
the TPM unresponsive and block until the increment up-
date propagates all the way to the cloud and the response
returns to the local device.

Instead, we chose to make cloud communication
asynchronous. Whenever a command that needs access
to remote NV is received, cTPM returns to the caller an
encrypted blob that needs to be sent remotely. The caller
must send this blob to the cloud; if the cloud accepts
the blob, it returns another encrypted blob reply to the
caller. The caller then passes this reply to the cTPM, at
which point the command completes. cTPM remains re-
sponsive to all other commands during this asynchronous
communication with the cloud. Figure 4 illustrates these
steps and contrasts them with a traditional simple TPM
command. All cTPM commands that do not require ac-
cess to remote NV storage remain synchronous, similar
to TPMs today.

Dealing with Connectivity Loss. Loss of connectiv-
ity is transparent to the cTPM because all network sig-
naling and communication is done by the operating sys-
tem. However, the two-step nature of asynchronous
commands requires the cTPM to maintain in-memory
state between the steps. This introduces another poten-
tial resource allocation denial-of-service attack: a mali-
cious OS could issue many asynchronous commands that
cause the cTPM to fill up its RAM. Also, as mentioned in
our threat model, an attacker could launch a staleness at-
tack whereby artificial delays are introduced in the com-
munication with the cloud.

To protect against these attacks, cTPM maintains a
global route timeout (GRT) value. Whenever an asyn-
chronous request is issued, cTPM starts a timer set to
the GRT. Additionally, to free up RAM, cTPM scans all
outstanding asynchronous commands and discards those
whose timers have expired. The GRT can be set by the
cTPM’s owner and has a default value of 5 minutes.

5.4 Cloud-backed NV Storage

The TPM uses a special data structure, called an NV
index, to store data values persistently to NV storage.
When a persistent object is referenced in a TPM com-
mand, the TPM loads the object into its RAM. When al-
locating a new index, an application must specify its ac-
cess control (read-only or read-write), its type, and size.
There are four possible types of NV indexes: (1) ordi-
nary, for storing data blobs, (2) counters, for storing se-
cure monotonic counters, (3) bit-fields, which can be set
individually, and (4) extend, which can be modified only
by using an extend operation similar to PCRs.

At a high level, the cloud-backed NV storage is just
a key-value store whose keys are NV indices. Access-
ing the remote NV index entries requires the OS to as-
sist with the communication between the cTPM and the
cloud. These operations are thus asynchronous and fol-
low the same two-step model described in Figure 4.
However, the remote nature of these NV indices raises
additional design challenges.

Local NV Storage Cache. Remote NV entries can be
cached locally in the cTPM’s RAM. To do so, we add
a time-to-live (TTL) to remote NV entries. The TTL
specifies how long (in seconds) the cTPM can cache an
NV entry in its local RAM. Once the TTL expires, the
NV index is deleted from RAM and must be re-loaded
from the remote cloud NV storage with a fresh, up-to-
date copy. The local storage cache is not persistent – it
is fully erased each time the computer reboots. We also
add a synchronization timestamp (ST) set to the time the
entry was last cached locally. If there is no in-memory
cached entry of the NV index, this timestamp is null.

Caching’s main benefits are performance and avail-
ability; remote NV read operations may not require a
round-trip to the cloud if they can be read from the lo-
cal cache. This enables the reading of NV storage entries
even when the device is disconnected as long as their
TTL has not expired. The trade-off is that locally cached
entries could be stale. Cloud updates to a cloud-backed
NV entry are reflected locally only after the TTL expires.
The TTL controls the trade-off between performance and
staleness for each NV index entry.

For writes, the local cache’s policy is write back, and
it relies on the caller to propagate the write to the cloud
NV storage. A cTPM NV write command updates the
cache first and returns an error code that indicates the
write back to the NV storage is pending. The caller must
initiate a write protocol to the cloud NV. If the caller fails
to complete the write back, the write remains volatile,
and the cTPM makes no guarantees about its persistence.

Trusted Clock. In cTPM, the trusted clock is an NV
entry (with a pre-assigned NV index) that only the cloud
can update. The local device can read the trusted clock
simply by issuing an NV read command for this remote
entry. Reading the entry is subject to a timeout much
stricter than the regular global route timeout (GRT),
called the global clock timeout (GCT). The trusted clock
NV entry is cached in the on-chip RAM. In this way, the
cTPM always has access to the current time by adding
the current timer tick count to the synchronization times-
tamp (ST) of the clock NV entry.

maxClockError ≤ TTL× drift+GCT (1)

Equation (1) describes the upper bound of the local
clock’s accuracy as a function of TTL, drift and GCT. By
default, the TTL is set to 1 day and the global clock time-
out (GCT) to 1 second. A low GCT improves local clock
accuracy, but may lead to unavailability if the device-
to-cloud communication has high latency. We find that
these values are sufficiently accurate for our mobile sce-
nario (i.e., the release of movies on Fridays at midnight).
However, setting the GCT even lower can further im-
prove accuracy, while setting the TTL lower reduces the
effect of drift.

5.5 Islanded Devices

Although connectivity loss is masked by the OS, de-
vices could be offline for long periods of time. We refer
to such devices as islanded devices. Islanded devices do
not raise additional security concerns, even when they
are out of sync with the cloud. Instead, when long
periods of disconnection occur the cTPM functionality
slowly degrades as entries in the local NV cache become
stale. When devices reconnect, they need to re-sync their
cloud-based cTPM state. However, we believe that most

NV_Read(NVIndex idx) {

// Garbage collect all local cache
foreach nvIdx in LocalCache

if LocalCache[nvIdx].TTL Is Expired
delete nvIdx from LocalCache

endif
endforeach

// return NV entry if present
if idx in LocalCache return LocalCache[idx]

// return not found in cache
return ErrorCode.NotFoundInCache
}

Figure 5. Reading NV entry from local cache.

mobile devices become islanded only when left unused.
When used regularly, devices have ample opportunity to
connect to the Internet and sync their cTPM state.

6 Detailed Design and Implementation
This section provides more detail on the cTPM’s de-

sign and implementation. We describe how the cTPM
shares TPM-protected keys between the cloud and the
device, and we present the changes made to support NV
reads and writes. We also describe the cloud/device
synchronization protocol, and the three new TPM com-
mands we added to implement synchronization.

6.1 Sharing TPM-protected Keys

The TPM 2.0 API facilitates the sharing of TPM-
protected keys by decoupling key creation from key us-
age. TPM2 Create(), a TPM 2.0 command, creates a
symmetric key or asymmetric key-pair. The TPM cre-
ates the key internally and encrypts any private (or sym-
metric) keys with its storage key before returning them
to the caller. To use the key, the caller must issue a
TPM2 Load() command, which passes in the public
storage key and the encrypted private (or symmetric) key.
The TPM decrypts the private key and loads it in RAM.
The TPM can then begin to encrypt or decrypt using the
key.

The separation between create and load is needed due
to the limited RAM available on the TPM chip. It lets
callers create many keys without having to load them all
into RAM. As long as the storage root key (SRK) never
leaves the chip, encrypting the new keys’ private parts
with the SRK guarantees their confidentiality.

This separation lets cTPM use cloud-created keys on
the local device to gain two benefits. First, key sharing
between devices becomes trivial. The cloud can perform
the key sharing protocol between two cTPM VMs, as de-
scribed earlier in Figure 2. Unlike TPM 2.0, this proto-
col does not need to use a PKI, nor does it need to run in
a SEM. Once a shared key is created between two cloud
cTPM VMs, both mobile devices can load the key in their
chips separately by issuing TPM2 Load() commands.

NV_Write(NVEntry entry) {

//Garbage collect all local cache
foreach nvIdx in LocalCache
if LocalCache[nvIdx].TTL Is Expired
delete nvIdx from LocalCache

endif
endforeach

//Insert the entry in the cache
idx = LocalCache.Append(entry)

//Set the entry’s TTL
LocalCache[idx].TTL = DefaultTTL
}

Figure 6. Writing NV entry to local cache.
Second, key creation can be performed even when the
mobile device is offline. This makes it simple for users to
create shared keys across all their devices without having
to ensure those devices are online first. We illustrate both
these benefits in our extension of Pasture in Section 7.

6.2 Accessing Cloud NV Storage
The cTPM maintains a local cache of all reads and

writes made to the cloud NV storage. A read returns a
cache entry, and a write updates a cache entry only. The
cTPM does not itself update remote cloud NV storage;
instead the caller must synchronize the on-chip RAM
cache with the cloud NV storage. This is done using a
synchronization protocol.

Read Cloud NV. Upon an NV read command, the cor-
responding NV entry is returned from the local cache. If
not found, cTPM returns an error code. The caller must
now check the remote NV; to do so, it needs to initiate a
pull synchronization operation (described in Section 6.3)
to update the local cache. After synchronization com-
pletes, the caller must reissue the read TPM command,
which will now be answered successfully from the cache.
Figure 5 shows the pseudo-code for reading a remote NV
entry from the local cache.

Write Cloud NV. An NV write command first updates
the cache and returns an error code that indicates the
write back to the remote NV storage is pending. The
caller must initiate a push synchronization operation to
the cloud NV (see Section 6.3). If the caller fails to
complete the write back, the write remains volatile, and
cTPM makes no guarantees about its persistence. Fig-
ure 6 shows the pseudo-code for writing an NV entry to
the local cache.

6.3 Synchronization Protocol
The synchronization protocol serves to: (1) update

the local cache with entries from the cloud-backed NV
storage for NV reads) and (2) write updated cache en-
tries back to the cloud-backed NV storage (for NV
writes). On the device side, the caller performs the proto-
col using two new commands, TPM2 Sync Begin() and

𝑇𝑆1: 𝑛𝑜𝑛𝑐𝑒, 𝑁𝑉_𝑅𝐸𝐴𝐷, 𝑁𝑉_𝐼𝑑𝑥 𝐶𝐶𝑅

If 𝑇𝑆2 − 𝑇𝑆1 > GRT , read is not fresh.

9

𝑇𝑆2: 𝑛𝑜𝑛𝑐𝑒, 𝑅𝐶_𝑆𝑈𝐶𝐶𝐸𝑆𝑆, 𝑁𝑉𝑠 𝐶𝐶𝑅

Figure 7. Synchronization protocol: pull NV entry
from cloud-backed NV storage.

TPM2 Sync End(). These commands take a parameter
called direction, which can be set to either a pull or push
to distinguish between reads and writes. All messages
are encrypted with the cloud communication key (CCK),
a symmetric key.

Pull from Cloud-backed NV Storage. The cTPM first
records the value of its internal timer and sends a mes-
sage that includes the requested NV index and a nonce.
The nonce checks for freshness of the response and pro-
tect against replay attacks. Upon receipt, the cloud de-
crypts the message and checks its integrity. In response,
the cloud sends back the nonce together with the value
corresponding to the NV index requested. The cTPM
decrypts the message, checks its integrity, and verifies
the nonce. If these checks are successful, cTPM per-
forms one last check to verify that the response’s delay
did not exceed its global read timeout (GRT) value. If
all checks pass, cTPM processes the read successfully.
Figure 7 shows the precise messages exchanged between
the cTPM and the cloud to read the remote NV.

Push to Cloud-backed NV Storage. The protocol for
writing back an NV entry is more complex because it
must also handle the possibility that an attacker may try
to reorder write operations. For example, a malicious
OS or application can save an older write and attempt
to reapply it later, effectively overwriting the up-to-date
value. To overcome this, the protocol relies on a secure
monotonic counter maintained by the cloud. Each write
operation must present the current value of the counter to
be applied; thus, stale writes cannot be replayed. cTPM
can read the current value of the secure counter using the
previously described pull protocol. Figure 8 shows the
precise messages exchanged between the cTPM and the
cloud to write a remote NV entry. Note that reading the
secure counter need not be done on each write because
the local cTPM caches the up-to-date value in RAM.

When the cloud receives an NV entry through the
push synchronization protocol, it must update its NV
storage. To do so, we equipped the cTPM with a
third command, called TPM2 Sync Proc() (for pro-
cess). This command can be issued only by the cloud;
the cloud takes the message received from the local de-
vice and calls sync process with it. The cloud cTPM
decrypts the message and applies the NV update.

𝑇𝑆1: 𝑛𝑜𝑛𝑐𝑒, 𝑐𝑡𝑟, 𝑁𝑉_𝑊𝑅𝐼𝑇𝐸, 𝑁𝑉_𝑆𝑒𝑙, 𝑁𝑉𝑠 𝐶𝐶𝑅

11

𝑇𝑆2: 𝑛𝑜𝑛𝑐𝑒, 𝑐𝑡𝑟, 𝑅𝐶_𝑆𝑈𝐶𝐶𝐸𝑆𝑆, 𝑁𝑉𝑠 𝐶𝐶𝑅

Figure 8. Synchronization protocol: push NV entry
to cloud-backed NV storage.

6.4 Implementation
We implemented cTPM by modifying the TPM 2.0

(release 0.96) codebase; this codebase serves as both the
TPM specification and a reference implementation. The
original codebase was 23,163 lines of code; for cTPM,
we added 1,304 lines of code, for a total of 24,467 lines
of code. The bulk of this code implements the three new
cTPM commands – sync begin, end, and process. We
also made minor changes to the commands that update
the TPM NV. These commands indicate whether NV ac-
cess should be to the local on-chip NV or the cloud-
backed NV. If the latter, the command can return addi-
tional error codes depending on whether the NV entry is
found in the local cache (for reads) or whether the update
must be written back to the cloud NV.

The TPM 2.0 codebase does not include a cryptog-
raphy library. This is deliberate in order to reduce the
hurdle of porting it to different OEM hardware environ-
ments. For example, one hardware OEM might want
to use its own in-house crypto library, whereas another
might want to use OpenSSL. The TPM 2.0 codebase just
defines a crypto API. We used a Microsoft internal cryp-
tography library for the TPM 2.0 needs.

TPM 2.0 also does not include platform resources,
such as how to obtain entropy, how to receive a power-
on/power-off signal, or how to access the underlying
NV storage. For all platform needs, we used a library
that provides the TPM platform resources from the un-
derlying OS (Windows). Our platform implementation
receives TPM commands via a network socket using a
home-baked command/response protocol.

All our testing code and applications, such as Pasture
and TrInc, were implemented in C#. All TPM commands
are relayed via the network socket to and from cTPM.

7 Case Studies
This section presents two case studies on using cTPM

to build trusted mobile services. In each case, we de-
scribe these services’ current limitations and show how
cTPM addresses them by improving performance or
adding functionality.

7.1 Case Study 1: Pasture
Pasture [14] is a TPM-based protocol for secure of-

fline data access. Using Pasture, the content receiver cre-
ates a TPM-bound encryption key, called a bound key,

with a usage policy dictating that the TPM can use the
key for decrypting content only when a certain PCR reg-
ister contains a specified value. This policy provides ac-
cess undeniability – once the key is used for decryption,
the user cannot lie about its usage, and verifiable revoca-
tion – the user cannot use the key once revoked. Issuing
a TPM extend operation on the PCR register to a pre-
determined value R represents the receiver’s decision to
consume the content. If the receiver decides to revoke the
content instead, it extends the PCR to a different value.
In this case, the PCR cannot be extended to R any longer.
Over time, the PCR value represents a chain of decisions
about whether to watch or revoke a sequence of movies.

Upon receiving a bound key, the content server checks
that the key is bound to a correct usage policy, encrypts
the content using it, and sends the encrypted content to
the receiver. At any point in the future, the receiver can
choose whether or not to decrypt the content; this choice
can occur even in disconnected mode. Once made how-
ever, this choice cannot be undone.

The Pasture protocol also addresses computer reboots.
An adversary could try to use such reboots to reset the
PCR register, which opens the door to rollback attacks.
This part of the Pasture protocol requires secure execu-
tion mode (SEM). In our cross-device Pasture implemen-
tation, we eliminated the need for SEM by leveraging a
new TPM 2.0 type of NV index that has behavior similar
to a PCR and is modified using TPM2 NV Extend().

Limitation 1: Lack of Sharing. The lack of sharing
primitives in TPM prevents extending Pasture to a set
of devices owned by a single user. Instead, each device
must run its own version of Pasture, creating a TPM-
specific bound key and uploading it to the server. The
server then runs a Pasture session with each individual
device. All devices must act separately despite being
owned by the same user.

With cTPM, the cloud performs the Pasture protocol
on behalf of all devices owned by a single user. A single
bound key is shared by all devices, and a single copy of
the content is encrypted with this bound key. The cloud
can write this bound key directly to the cloud-backed NV
storage and encrypt the content even when the client is
disconnected. When the receiver connects to the cloud,
it can then re-sync its nonvolatile state to receive a copy
of the bound key and to start downloading encrypted con-
tent. As with the original Pasture, the policy specifies the
PCR value necessary to use the key bound to it.

This multi-device version of Pasture complicates the
process of accepting and revoking content. If any device
accepts content and starts decrypting it, then the content
can no longer be revoked. Thus, the content server ac-
cepts a revoke decision only when all of a user’s devices
have decided to revoke.

CreateBoundKey(hM):

//For each device, read current PCR and
// future PCR if decision is accept.
foreach dev in Owner.AllDevices() do

Rdevt ← TPM_Read(PCRdevAPP)

Rdevt+1 ← SHA2(Rdevt ||hM)
endfor

//Create bound key with a disjunction of commit values.
E←TPM_CreateWrapKey({
{

PCRAPP = Rdev1t+1 ||

PCRAPP = Rdev2t+1 ||
...

PCRAPP = RdevNt+1

}
&&
PCRSEM = SemHappy

})

//Create proof for the bound key.
EP← (‘‘CreateBoundKey’’, hM,

Rdev1t , Rdev1t+1 , · · · , RdevNt , RdevNt+1 , E, α)

Figure 9. Create bound key in multi-device Pasture.

Another interesting challenge of multi-device Pasture
is when one user makes conflicting decisions on differ-
ent devices. This causes different values to be stored
in their PCR registers. One solution is to insist that all
devices owned by the same user share the same log of
decisions about accepting or revoking the content. This
ensures that the PCR registers on each device share the
same value and work in sync. However, it is very dif-
ficult to enforce this coordination across devices when
some are offline.

An alternate approach lets different devices maintain
their own per-device log of decisions. This more flexible
solution lets a user make different decisions for different
devices without having to reconcile them. Because the
per-device decisions can differ, the content server must
ensure that a content revocation occurs only when all de-
vices revoke. This approach requires the bound key to be
attached to a policy that specifies a set of possible PCR
values corresponding to each separate device.

We implemented this latter approach using the
TPM2 PolicyOR() command, which creates a single pol-
icy as a disjunction of individual conditions (in our case,
each condition corresponds to one PCR value). As long
as a device’s PCR value matches one condition, the
bound key can decrypt the content. Note that extend-
ing the accept decision from one value to multiple val-
ues does not reduce protocol security even though it in-
creases the chances of a hash collision. If hash colli-
sions ever become a cause of concern, TPM 2.0 (and thus
cTPM) permits the use of stronger hash functions (e.g.,
192-bit SHA384). Figure 9 shows the multi-device Cre-
ateBoundKey implementation (CreateBoundKey in the
original Pasture is shown in Figure 3 of [14]).

Attest(i, c’, h, n):

1. Assert NV_Read(i) is a remote NV of type counter.
2. Let c be the value of that counter.
3. Assert no roll-over: c ≤ c′.
4. a←< i, c, c′, h >TRINCPRIV

.

5. Insert a into Q, ejecting the oldest value.
6. NV_Write(i, c’).
7. Return a.

Figure 10. Attest in cTPM TrInc [16].

Limitation 2: Lack of Server-side Revocation. The
original Pasture protocol lets a receiver revoke access to
content in a verifiable manner. Once revoked, the re-
ceiver cannot further access the content. However, Pas-
ture does not support server-side revocation. A Pasture
movie server could use revocation to deny access to ma-
licious clients, such as clients that paid using stolen credit
cards.

Implementing server-side revocation in Pasture would
prove very challenging because the client would have to
agree to run code that would unload the bound key from
the TPM. The client could always refuse to run such code
and prevent a server from revoking the bound key.

With cTPM, the content server could simply ask the
cloud to delete the bound key from the cloud-backed
cTPM NV storage. This would not necessarily cause
an immediate revocation because the device could be of-
fline and store a cached copy of the key. However, the
cached copy would eventually expire (based on its TTL),
at which point the key is guaranteed to be revoked.

Limitation 3: Lack of Trusted Clock Guarantees.
Because TPMs lack a trusted source of time, a Pasture
movie server cannot offer time-based guarantees for its
content (e.g., make the following movie available for
watching next Friday at midnight). This scenario is quite
attractive to consumers: a startup is currently selling pro-
prietary technology for watching movies at home the
same day they arrive in theaters. This hardware costs
$35,000, and each movie release costs $500 [6].

With cTPM’s trusted clock, a bound key could in-
corporate a clause specifying a future timestamp as an
additional condition for using the key for decryption.
The bound key could be revoked (either client-side or
server-side) at any time; however its usage for decryption
would remain restricted to only a future, pre-specified
time value.

7.2 Case Study 2: TrInc

TrInc [16] is a trusted incrementer used to combat
“equivocation”, i.e., making conflicting statements to
others in a distributed system. It uses a secure counter
and a key, and was implemented on a smartcard due to
its poor performance on TPMs.

TrInc’s main API, a function called Attest, produces
an attestation that the secure counter has been incre-

TPM 2.0 TPM 1.2
TPM2 NV Write() TPM NV Write()
TPM2 NV Read() TPM NV Read()
TPM2 NV Read (Counter)() TPM ReadCounter()
TPM2 PCR Read() TPM PCRRead()
TPM2 PCR Extend() TPM PCRWrite()
TPM2 Create() TPM Create()
TPM2 Load() TPM Load()
TPM2 Unseal(Unbind)() TPM Unbind()
TPM2 Sign() TPM Sign()
TPM2 Quote() TPM Quote()
TPM2 CertifyCreation() TPM Sign()
TPM2 Sync Begin() TPM Unbind()
TPM2 Sync End() TPM Unbind()

Table 1. Mapping TPM 2.0 commands to their TPM
1.2 counterparts.

mented from the current value c to a value c′ not smaller
than c. Each attestation covers the secure counter’s in-
terval (c, c′]. TrInc uses these attestations to prove state-
ments that prevent nodes from equivocating without be-
ing detected. In BitTorrent, for instance, the counter
represents the number of blocks a peer has received, a
value which is naturally monotonically increasing. Fig-
ure 10 illustrates our implementation of the Attest func-
tion using cTPM (the original Attest implementation is
described in Section 3.5.1 of [16]).

8 Evaluation

8.1 Protocol Verification

We verified the correctness of our protocols using an
automated theorem prover, ProVerif [3], which supports
the specification of security protocols for distributed sys-
tems in concurrent process calculus (pi-calculus). We
specified the synchronization protocol used by our sys-
tem, both pull and push, in 98 lines of pi-calculus code.
ProVerif verified the security of our protocols in the pres-
ence of an attacker with unrestricted access to the OS,
applications, or network. The attacker could intercept,
modify, replay and inject new messages into the network
(similar to the Dolev-Yao model).

8.2 Performance Evaluation

Our main challenge in evaluating the performance
of cTPM was the unavailability of a hardware TPM
2.0 chip. The TPM 2.0 specification, currently re-
leased for public review, is not yet available off-the-shelf.
Through private conversations with TPM manufacturers,
we learned that they are already porting the TPM 2.0
specification to their hardware, and that the hardware
performance profile for TPM 2.0 will be similar to that
of TPM 1.2. As a result, we used a TPM 1.2 chip to
emulate the hardware performance of a future TPM 2.0
chip. To do so, we mapped TPM 2.0 commands used in
our cTPM implementation to their equivalent TPM 1.2
counterparts, as shown in Table 1.

0

200

400

600

800

TMP 2.0
NVRead

cTPM
NVRead

(3G)

cTPM
NVRead
(WiFi)

TPM 2.0
NVWrite

cTPM
NVWrite

(3G)

cTPM
NVWrite

(WiFi)

La
te

n
cy

 (
m

se
c)

TPM_NV Command
TPM2_Sync_End
Xfer + TPM2_Sync_Proc
TPM2_Sync_Begin

Figure 11. cTPM NV performance: 640 bytes.

Our experiments used the following setup. All ap-
plications that ran on the local cTPM used Windows 7
running on a PC with a 2 GHz Quad Intel Core i7. When
a local cTPM command was issued, it was translated ac-
cording to the map in Table 1 and executed against an
Infineon TPM 1.2 chip. In the cloud, we ran the cTPM
software in a Windows 7 VM (to emulate cloud behav-
ior). By design, the cloud component of cTPM did not
need to interact with a TPM chip.

Benchmarking NV Storage Performance. cTPM
trades off the accessing of limited local TPM NV storage
for the accessing of cloud-backed storage. While cloud-
backed storage is very fast, it introduces latency between
the device and the cloud. To evaluate this trade-off, we
measured the latency of NV read and write operations
for both TPM 2.0 and cTPM. We emulated Internet la-
tencies using a standard network emulator [22] primed
with 3G/4G and Wi-Fi Internet latency distributions from
a recent measurement project [13].

We repeated our experiments with differently sized
objects accessed in NV storage; sizes ranged from 256
bytes (corresponding to the size of a regular NV counter)
to the maximum size allowed by the hardware TPM. Un-
fortunately, TPMs have low NV storage capacities: the
largest write allowed by our TPM was only 640 bytes
(whereas cTPM had no restrictions on the maximum size
of its NV data). We present results using only 640-byte
data objects; the results for the lower-sized objects are
similar.

Figure 11 shows the access latencies for 640-byte NV
objects. The local TPM 2.0 latencies are all due to the
running of TPM NV commands. In contrast, cTPM
latencies are the combination of four steps: (1) issu-
ing a TPM2 Sync Begin() command, (2) transferring the
data to and from the cloud (labeled Xfer) and issuing
a TPM2 Sync Proc() command in the cloud, (3) issu-
ing a TPM2 Sync End() command, and (4) issuing a
TPM NV command to access the data in memory. For
NV reads, Internet latencies make the cTPM commands
slightly slower in the case of 3G latencies and slightly
faster in the case of Wi-Fi latencies. Note, however, that
NV reads become much faster once cached locally.

0

20

40

60

80

0 10 20 30 40 50 60 70 80 90 100

La
te

n
cy

 (
se

co
n

d
s)

TPM 2.0

cTPM

Figure 12. Latency of TPM RSA 2048 key creation.

Benchmarking Key Creation. When creating a key,
the TPM uses local on-chip entropy, whereas cTPM can
use any entropy source available to the cloud, such as a
high performance hardware entropy source. For exam-
ple, a company in Japan sells hardware able to produce
550 MBytes/sec of entropy for less than US$10K [15].
Our experiments used local hardware entropy found on
commodity PCs. Even this entropy source was much
faster than that found in TPMs.

Figure 12 shows the latencies of running 100 consec-
utive TPM commands to create an RSA key. The laten-
cies of TPM commands are highly variable because the
TPM blocks incoming commands to wait for the entropy
source to generate random bits. The same is true for the
hardware source of entropy on our PC, but this source
is much faster, i.e., an average of an order of magnitude
(factor of 12) faster than the TPM chip.

9 Related Work
cTPM draws inspiration from previous work on com-

modity trusted hardware and trusted applications.

Commodity Trusted Hardware Other than TPMs.
The ARM architecture’s solution for trusted comput-
ing is known as the ARM TrustZone [1]. ARM Trust-
Zone provides a trusted execution environment on CPU
cores, with hardware support for memory protection of
the trusted environment, flexible control over interrupt
delivery to the trusted environment, and the full power of
the CPU for cryptographic operations. One could equip
an ARM device with a TPM (or a cTPM) by running the
TPM software stack inside the TrustZone.

Recent work from Intel has described Secure Guard
Extensions (SGX) [20, 2, 12], a set of new instructions
and architectures that support the concept of enclaves,
which are isolated runtime environments similar to ARM
TrustZone. Intel has shown the possibility of running se-
cure applications inside of an enclave, such as a pass-
word manager, an enterprise rights management solu-
tion, and secure video conferencing [12]. It appears fea-
sible for the TPM and cTPM software stacks to run inside
an enclave, as well.

Trusted Applications. In addition to Pasture [14] and
TrInc [16], several previous works have proposed the use

of TPMs for building trusted mobile services. TruWal-
let described a TPM-based authentication tool for Web
password protection [7]. It offered password sharing
across devices owned by the same user (called secure
migration). However, TruWallet needed to assume that
the GUI and kernel were both trusted. Another project
implemented a credentials manager in secure execution
mode [4]. It encountered many of the performance chal-
lenges associated with this mode; for example, the net-
work driver froze when running in SEM for more than
8 seconds. More recently, Windows 8 provided virtual
smart cards, a way to use TPMs for remote authentica-
tion with server-side support [23]; these cards, bound to
a single TPM, cannot migrate. For all these applications,
cTPM would greatly ease sharing across devices.

Memoir describes a technique to protect the state of
a trusted application while minimizing the number of
NVRAM write operations [26]. With cTPM, applica-
tions could write their state to the cloud-backed NV stor-
age and rely on Memoir-like techniques only when oper-
ating in disconnected mode.

10 Conclusions

This paper introduced cTPM, a cloud-enhanced de-
sign change to a traditional TPM that enables the simple
sharing of keys and data across a user’s many devices.
We demonstrated cTPM’s versatility by: 1) extending
Pasture to support offline data access across multiple de-
vices, server-side revocation, and real-time based guar-
antees for content availability, and 2) re-implementing
TrInc without the need for extra hardware. We veri-
fied the protocols used to synchronize the cTPM’s re-
mote cloud storage and showed that cTPM’s perfor-
mance meets or exceeds that of a traditional TPM.

Acknowledgments: We are grateful to Ron Aigner,
Ramakrishna Kotla, Jay Lorch, Bryan Parno, and Scott
Shell for their feedback on this work and on the paper.
We would like to thank Jonathan Smith and the anony-
mous reviewers for their feedback.

References

[1] ARM Security Technology – Building a Secure
System using TrustZone Technology. ARM Tech-
nical White Paper, 2005-2009.

[2] I. Anati, S. Gueron, S. Johnson, and V. Scarlata.
Innovative Technology for CPU Based Attestation
and Sealing. In Proc. of Workshop on Hardware
and Architectural Support for Security and Privacy,
Tel-Aviv, Israel, 2013.

[3] B. Blanchet. An Efficient Cryptographic Proto-
col Verifier Based on Prolog Rules. In Proc. of

14th IEEE Computer Security Foundations Work-
shop (CSFW), Cape Breton, NS, 2001.

[4] S. Bugiel and J.-E. Ekberg. Implementing an
Application-Specific Credential Platform Using
Late-Launched Mobile Trusted Module. In Proc.
of 5th Annual Workshop on Scalable Trusted Com-
puting, Chicago, IL, 2010.

[5] D. Challener, K. Yoder, R. Catherman, D. Safford,
, and L. V. Doorn. A Practical Guide to Trusted
Computing. IBM Press, 2007.

[6] Digital Trends. Prima Cinema brings movies to
home theaters on the day of the release for $500 a
pop. http://www.digitaltrends.com/
home-theater/prima-cinema-brings-
movies-to-the-home-on-the-day-of-
the-release/.

[7] S. Gajek, H. Lohr, and A.-R. Sadeghi. TruWallet:
Trustworthy and Migratable Wallet-Based Web Au-
thentication. In Proc. of 4th Annual Workshop on
Scalable Trusted Computing, Chicago, IL, 2009.

[8] GigaOM. The average US subscriber owns 1.57
mobile devices. http://gigaom.com/2012/
10/22/the-average-us-subscriber-
owns-1-57-mobile-devices/.

[9] P. Gilbert, J. Jung, K. Lee, H. Qin, D. Sharkey,
A. Sheth, and L. P. Cox. YouProve: Authenticity
and Fideltiy in Mobile Sensing. In Proc. of 10th
International Conference on Mobile Systems, Ap-
plications, and Services (MobiSys), Lake District,
UK, 2012.

[10] K. A. Goldman. IBM’s Software Trusted Plat-
form Module. http://sourceforge.net/
projects/ibmswtpm/.

[11] Google. The Chromium Projects. http://www.
chromium.org/developers/design-
documents/tpm-usage.

[12] M. Hoekstra, R. Lal, P. Pappachan, C. Rozas,
V. Phegade, and J. del Cuvillo. Using Innovative
Instructions to Create Trustworthy Software Solu-
tions. In Proc. of Workshop on Hardware and Ar-
chitectural Support for Security and Privacy, Tel-
Aviv, Israel, 2013.

[13] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen,
and O. Spatscheck. A Close Examination of Perfor-
mance Power Characteristics of 4G LTE Networks.
In Proc. of 10th International Conference on Mo-
bile Systems, Applications, and Services (MobiSys),
Lake District, UK, 2012.

[14] R. Kotla, T. Rodeheffer, I. Roy, P. Stuedi, and
B. Wester. Pasture: Secure Offline Data Access
Using Commodity Trusted Hardware. In Proc. of
10th USENIX Symposium on Operating Systems

http://www.digitaltrends.com/home-theater/prima-cinema-brings-movies-to-the-home-on-the-day-of-the-release/
http://www.digitaltrends.com/home-theater/prima-cinema-brings-movies-to-the-home-on-the-day-of-the-release/
http://www.digitaltrends.com/home-theater/prima-cinema-brings-movies-to-the-home-on-the-day-of-the-release/
http://www.digitaltrends.com/home-theater/prima-cinema-brings-movies-to-the-home-on-the-day-of-the-release/
http://gigaom.com/2012/10/22/the-average-us-subscriber-owns-1-57-mobile-devices/
http://gigaom.com/2012/10/22/the-average-us-subscriber-owns-1-57-mobile-devices/
http://gigaom.com/2012/10/22/the-average-us-subscriber-owns-1-57-mobile-devices/
http://sourceforge.net/projects/ibmswtpm/
http://sourceforge.net/projects/ibmswtpm/
http://www.chromium.org/developers/design-documents/tpm-usage
http://www.chromium.org/developers/design-documents/tpm-usage
http://www.chromium.org/developers/design-documents/tpm-usage

Design and Implementation (OSDI), Hollywoood,
CA, 2012.

[15] LETech. The Fastest True Random Num-
ber Generator with a real-time self-test func-
tion. http://www.letech.jpn.com/rng/
grang_24ch_e.html.

[16] D. Levin, J. R. Douceur, J. R. Lorch, and T. Mosci-
broda. TrInc: Small trusted hardware for large dis-
tributed systems. In Proc. of 6th USENIX Sympo-
sium on Networked Systems Design and Implemen-
tation (NSDI), Boston, MA, 2009.

[17] H. Liu, S. Saroiu, A. Wolman, and H. Raj. Software
Abstractions for Trusted Sensors. In Proc. of 10th
International Conference on Mobile Systems, Ap-
plications, and Services (MobiSys), Lake District,
UK, 2012.

[18] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta,
V. Gligor, and A. Perrig. TrustVisor: Efficient
TCB Reduction and Attestation. In Proc. of IEEE
Symposium on Security and Privacy, Oakland, CA,
May 2010.

[19] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter,
and H. Isozaki. Flicker: An Execution Infrastruc-
ture for TCB Minimization. In Proc. of the ACM
European Conference on Computer Systems (Eu-
roSys), Glasgow, UK, 2008.

[20] F. Mckeen, I. Alexandrovich, A. Berenzon,
C. Rozas, H. Shafi, V. Shanbhogue, and U. Sav-
agaonkar. Innovative Instructions and Software
Model for Isolated Execution. In Proc. of Work-
shop on Hardware and Architectural Support for
Security and Privacy, Tel-Aviv, Israel, 2013.

[21] Microsoft. Help protect your files with
BitLocker Driver Encryption. http:
//windows.microsoft.com/en-
us/windows-8/using-bitlocker-
drive-encryption.

[22] Microsoft. Standalone Network Emulator
Tool. http://blogs.technet.com/
b/juanand/archive/2010/03/05/
standalone-network-emulator-
tool.aspx.

[23] Microsoft. Understanding and Evaluating Virtual
Smart Cards. http://www.microsoft.
com/en-us/download/details.aspx?
id=29076.

[24] A. Nguyen, H. Raj, S. Rayanchu, S. Saroiu, and
A. Wolman. Delusional Boot: Securing Cloud Hy-
pervisors without Massive Re-engineering. In Proc.
of the European Conference on Computer Systems
(EuroSys), Bern, Switzerland, April 2012.

[25] NIST. Recommendation for Key Deriva-

tion Using Pseudorandom Functions.
http://csrc.nist.gov/publications/
nistpubs/800-108/sp800-108.pdf.

[26] B. Parno, J. R. Lorch, J. R. Douceur, J. Mickens,
and J. M. McCune. Memoir: Practical State Con-
tinuity for Protected Modules. In Proc. of IEEE
Symposium on Security and Privacy, Oakland, CA,
2011.

[27] J. Postel and K. Harrenstien. Time Protocol.
http://tools.ietf.org/html/rfc868.

[28] H. Raj, D. Robinson, T. Tariq, P. England,
S. Saroiu, and A. Wolman. Credo: Trusted Com-
puting for Guest VMs with a Commodity Hyper-
visor. Technical Report MSR-TR-2011-130, Mi-
crosoft Research, 2011.

[29] M. Ryan. Introduction to the TPM 1.2.
www.cs.bham.ac.uk/˜mdr/research/
papers/pdf/08-intro-TPM.pdf.

[30] N. Santos, H. Raj, S. Saroiu, and A. Wol-
man. Trusted Language Runtime (TLR): Enabling
Trusted Applications on Smartphones. In Proc. of
12th Workshop on Mobile Computing Systems and
Applications (HotMobile), Phoenix, AZ, 2011.

[31] N. Santos, R. Rodrigues, K. P. Gummadi, and
S. Saroiu. Policy-Sealed Data: A New Abstrac-
tion for Building Trusted Cloud Services. In Proc.
of the 21st USENIX Security Symposium, Bellevue,
WA, 2012.

[32] F. B. Schneider, K. Walsh, and E. G. Sirer. Nexus
Authorization Logic (NAL): Design Rationale and
Applications. ACM Transactions on Information
and System Security, 14(1), 2011.

[33] E. G. Sirer, W. de Bruijn, P. Reynolds, A. Shieh,
K. Walsh, D. Williams, , and F. B. Schneider. Logi-
cal Attestation: An Authorization Architecture For
Trustworthy Computing. In Proc. of Symposium
on Operating Systems Principles (SOSP), Cascais,
Portugal, 2011.

[34] S. Skorobogatov. Physical Attacks on Tamper Re-
sistance: Progress and Lessons. In Proc. of 2nd
ARO Special Workshop on Hardware Assurance,
Washington, DC, 2011.

[35] C. Tarnovsky. Semiconductor Security Aware-
ness, Today & Yesterday. BlackHat 2010 –
http://www.youtube.com/watch?v=
YzejlrGcnY8.

[36] The Economic Times (indiatimes). Singapore
leads the world on mobile take up and market-
ing. http://articles.economictimes.
indiatimes.com/2012-12-19/news/
35912444_1_mobile-app-mobile-
sales-singaporeans.

http://www.letech.jpn.com/rng/grang_24ch_e.html
http://www.letech.jpn.com/rng/grang_24ch_e.html
http://windows.microsoft.com/en-us/windows-8/using-bitlocker-drive-encryption
http://windows.microsoft.com/en-us/windows-8/using-bitlocker-drive-encryption
http://windows.microsoft.com/en-us/windows-8/using-bitlocker-drive-encryption
http://windows.microsoft.com/en-us/windows-8/using-bitlocker-drive-encryption
http://blogs.technet.com/b/juanand/archive/2010/03/05/standalone-network-emulator-tool.aspx
http://blogs.technet.com/b/juanand/archive/2010/03/05/standalone-network-emulator-tool.aspx
http://blogs.technet.com/b/juanand/archive/2010/03/05/standalone-network-emulator-tool.aspx
http://blogs.technet.com/b/juanand/archive/2010/03/05/standalone-network-emulator-tool.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=29076
http://www.microsoft.com/en-us/download/details.aspx?id=29076
http://www.microsoft.com/en-us/download/details.aspx?id=29076
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf
http://tools.ietf.org/html/rfc868
www.cs.bham.ac.uk/~mdr/research/papers/pdf/08-intro-TPM.pdf
www.cs.bham.ac.uk/~mdr/research/papers/pdf/08-intro-TPM.pdf
http://www.youtube.com/watch?v=YzejlrGcnY8
http://www.youtube.com/watch?v=YzejlrGcnY8
http://articles.economictimes.indiatimes.com/2012-12-19/news/35912444_1_mobile-app-mobile-sales-singaporeans
http://articles.economictimes.indiatimes.com/2012-12-19/news/35912444_1_mobile-app-mobile-sales-singaporeans
http://articles.economictimes.indiatimes.com/2012-12-19/news/35912444_1_mobile-app-mobile-sales-singaporeans
http://articles.economictimes.indiatimes.com/2012-12-19/news/35912444_1_mobile-app-mobile-sales-singaporeans

[37] The Register. Five mobile devices per person
for 2040? http://www.theregister.
co.uk/2012/07/18/acma_05_mobile_
numbers/.

[38] Trusted Computing Group. TPM 2.0
Library Specification FAQ. http:
//www.trustedcomputinggroup.
org/resources/tpm_20_library_
specification_faq.

[39] Trusted Computing Group. TPM Main Specifica-
tion Level 2 Version 1.2, Revision 116. http:
//www.trustedcomputinggroup.org/
resources/tpm_main_specification.

[40] F. Zhang, J. Chen, H. Chen, and B. Zang. CloudVi-
sor: Retrofitting Protection of Virtual Machines in
Multi-tenant Cloud with Nested Virtualization. In
Proc. of Symposium on Operating Systems Princi-
ples (SOSP), Cascais, Portugal, 2011.

[41] Y. Zhang, A. Juels, M. Reiter, and T. Ristenpart.
Cross-VM Side Channels and Their Use to Extract
Private Keys. In Proc. of the 19th ACM Confer-
ence on Computer and Communications Security,
Raleigh, NC, 2012.

http://www.theregister.co.uk/2012/07/18/acma_05_mobile_numbers/
http://www.theregister.co.uk/2012/07/18/acma_05_mobile_numbers/
http://www.theregister.co.uk/2012/07/18/acma_05_mobile_numbers/
http://www.trustedcomputinggroup.org/resources/tpm_20_library_specification_faq
http://www.trustedcomputinggroup.org/resources/tpm_20_library_specification_faq
http://www.trustedcomputinggroup.org/resources/tpm_20_library_specification_faq
http://www.trustedcomputinggroup.org/resources/tpm_20_library_specification_faq
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification

	Introduction
	Background
	Motivation
	Secure Execution Mode Limitations
	Limitation 1: Cross-Device Data Sharing
	Secure Key Exchange

	Limitation 2: Trusted Clock
	Limitation 3: NV Storage
	How cTPM Overcomes These Limitations

	Trust Assumptions and Threat Model
	Trusting the Cloud
	Threat Model

	cTPM High-Level Design
	Cross-Device Usage Model
	Architecture
	Shared Cloud Primary Seed
	Cloud-backed NV Storage
	Islanded Devices

	Detailed Design and Implementation
	Sharing TPM-protected Keys
	Accessing Cloud NV Storage
	Synchronization Protocol
	Implementation

	Case Studies
	Case Study 1: Pasture
	Case Study 2: TrInc

	Evaluation
	Protocol Verification
	Performance Evaluation

	Related Work
	Conclusions

