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ABSTRACT
Despite Bluetooth’s popularity, low cost, and low power require-
ments, Bluetooth applications remain remarkably unsophisticated.
Although the research community and industry have designedgames,
cell-phone backup, and contextual advertising systems with Blue-
tooth, few such applications have been prototyped or evaluated on
a large scale. Evaluating Bluetooth applications requiresrecruit-
ing devices in the wild and developing robust software that can
adapt to the heterogeneity of these devices. These requirements
have limited both the number and the magnitude of the experiments
with Bluetooth applications.

This paper proposes BlueMonarch, a system for evaluating Blue-
tooth applications in the wild. BlueMonarch emulates a Bluetooth
transfer to any device responding to Bluetooth Service Discovery
requests; because many cell-phones, laptops, and PDAs in the wild
respond to such probes, BlueMonarch enables quick prototyping
of Bluetooth applications in the wild, to hundreds of unmodified
Bluetooth devices. After we present the feasibility and accuracy of
BlueMonarch, we use BlueMonarch to evaluate a content delivery
system for Bluetooth. With BlueMonarch, we evaluated our system
inside a mall and a subway system; we were able to send tens of
megabytes of data to hundreds of Bluetooth devices in just a little
over an hour.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design – Wireless communication

General Terms
Experimentation,Measurement,Performance

Keywords
Bluetooth

1. INTRODUCTION
Bluetooth is more popular, cheaper, and consumes less power

than Wi-Fi. Recent news reports estimate that one billion con-
sumers own Bluetooth devices [7], and within a few years Bluetooth-
enabled devices are predicted to outnumber Wi-Fi five to one [38].
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Bluetooth interfaces consume an order of magnitude less power
than Wi-Fi and are very inexpensive. The manufacturing costof
a Bluetooth radio is roughly one third of that of Wi-Fi [37].

Yet, despite its popularity, low cost, and low power requirements,
Bluetooth is used today primarily to perform three simple tasks:
synchronizing address books, connecting wireless headsets to cell-
phones, and connecting laptops to the Internet via a cell-phone up-
link. Both research and industry have developed more sophisticated
Bluetooth applications, such as content delivery systems [12], cell-
phone backup [23, 36], contextual advertising systems [1, 5, 2],
games [30, 3, 15], and social software [19]. However, none of
these systems has enjoyed widespread deployment.

We cannot claim to understand all the reasons for this lack of
success. However, we believe that one significant factor is the enor-
mous effort that developers must make to prototype and evaluate
Bluetooth applications in the wild. First, recruiting a large num-
ber of participating devices poses a hardship. Second, Bluetooth
devices have extremely heterogeneous hardware and software [33],
which makes it difficult to develop robust application code.Third,
performing a representative evaluation of a Bluetooth application
requires repeating the experiment in different contexts because the
application behavior is extremely sensitive to its execution context
and environment. These challenges have significantly limited Blue-
tooth application experimentation. The absence of large-scale, in-
the-wild deployments has in turn cast doubt over the viability of
sophisticated Bluetooth applications.

This paper takes a modest step toward reducing the effort needed
to prototype Bluetooth applications. We present BlueMonarch, a
system for evaluating Bluetooth applications in the wild. Blue-
Monarch emulates a Bluetooth transfer to any device that is set to
respond to Bluetooth inquiries. Because many cell-phones,PDAs,
and laptops in the wild respond to such probes, researchers can
use BlueMonarch to emulate transfers to a diverse set of devices.
This functionality makes BlueMonarch useful for evaluating a large
class of Bluetooth applications, those in which a local server under
the experimenter’s control sends data to any remote device answer-
ing Bluetooth inquiries. By requiring control of just one device
of the two end points of a Bluetooth link, BlueMonarch enables
evaluations of Bluetooth applications to tens or even hundreds of
Bluetooth devices.

BlueMonarch’s measurement technique is inspired by Monarch,
a tool for emulating TCP transfers to Internet hosts withoutrequir-
ing their cooperation [14]. BlueMonarch shares Monarch’s key ob-
servation about how transfer protocols work: a sender transfers data
to a receiver in arbitrarily sized packets (typically large) that are an-
swered with small-sized acknowledgment packets. BlueMonarch
uses generic Bluetooth discovery probes and responses to emulate
this packet exchange between a sending device under the experi-
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menter’s control and any remote device that is discoverable. Be-
cause devices need not cooperate, BlueMonarch significantly low-
ers the barrier for the evaluation of Bluetooth applications. To
understand the extent of our system’s practicality, we usedBlue-
Monarch to evaluate a content delivery system prototype [1]: using
a single laptop equipped with four Bluetooth radios, we transmitted
tens of megabytes of data to hundreds of Bluetooth devices inthe
wild in just a little over an hour.

BlueMonarch’s accuracy stems from its direct online measure-
ments. For every packet transmitted in its emulated transfer, Blue-
Monarch sends an actual probe packet of the same size to the re-
ceiving device and interprets the response packet as an incoming
acknowledgment. Thus, emulated transfers are subjected tothe
same wide range of conditions as real Bluetooth transfers, includ-
ing interference, frame losses, and retransmission delays. However,
because BlueMonarch controls only one device, it can estimate
conditions for the round-trip link but not the one-way link.De-
spite this limitation, our evaluation shows that packet-level traces
of transfers emulated with BlueMonarch closely match actual Blue-
tooth transfers.

BlueMonarch enhances the state of the art in evaluating Blue-
tooth applications. Researchers currently evaluate theseapplica-
tions by running them in simulators or in controlled environments [23,
1, 36]. In contrast, BlueMonarch provides live access to Bluetooth
devices in the wild. This permits experimentation in realistic sce-
narios for which emulators are not widely available and controlled
experiments are not representative. BlueMonarch capturesthe sig-
nal propagation characteristics, obstructions, and interference that
exist in deployed systems. Additionally, software developers can
test and debug the performance and reliability of Bluetoothapplica-
tions to uncover bugs, performance bottlenecks, or poor application
design decisions.

We organized this paper to meet the needs of readers who are un-
familiar with Bluetooth. Section 2 identifies several Bluetooth ap-
plications that could be successfully evaluated using BlueMonarch.
Section 3 presents a short primer on Bluetooth that readers familiar
with Bluetooth can skip. We present the design of BlueMonarch in
Section 4, discuss implementation details in Section 5, andevaluate
BlueMonarch’s accuracy in Section 6. Section 7 shows the results
obtained when we used BlueMonarch to evaluate a content deliv-
ery system prototype for Bluetooth. We describe the relatedwork
in Section 8 and summarize our conclusions in Section 9.

2. BLUETOOTH APPLICATIONS
BlueMonarch emulates only those Bluetooth transfers in which

data is sent from a local device to any device in the wild. Blue-
Monarch cannot emulate upload transfers – those in which data is
received from devices in the wild. Despite this limitation,Blue-
Monarch enables the evaluation of many classes of Bluetoothap-
plications, three of which are now described.

2.1 Opportunistic Content Delivery
There is enormous interest in applications that deliver data op-

portunistically over Bluetooth. Examples include advertising sys-
tems [1, 12, 17, 5, 2], bulk-data content delivery [18], or systems
that deliver contextual information, such as bus schedules[20] or
environment monitoring information [26]. By placing servers in
urban crowded environments, these applications could deliver data
to many passers-by at low cost to both users and content producers.

Before deployment, advertisers and content producers could gauge
the effectiveness of their application by answering several ques-
tions, such as:

• Where should content delivery servers be placed to be most
effective? The answer depends on the application; for exam-
ple, some applications are optimized to reach as many users
as possible, while others must ensure that passers-by remain
in range long enough to receive a full copy of the data.

• Once deployed, how much data will the average user receive
from the server? For example, an advertiser should know if
there is ample opportunity to deliver ads that include sound-
tracks.

• How should the server be provisioned? For example, how
many Bluetooth radios should a server have?

Advertisers could use BlueMonarch to setup a server that would
emulate the data transfer to passers-by and thereby help shed light
on these questions prior to full system deployment.

2.2 Bluetooth Access Points
When used at home, modern handheld devices have two ways to

connect to the Internet: using 3G or using Wi-Fi. Neither option
is ideal: 3G has long latencies and its coverage is spotty; Wi-Fi is
power hungry. Bluetooth provides an attractive Internet connectiv-
ity alternative for mobile devices because it consumes lesspower
than Wi-Fi, has better latencies than 3G, and is simple to deploy.

Another potential scenario for the deployment of Bluetoothac-
cess points is bringing Internet connectivity to areas withno land-
line or cellular infrastructure. Typically, a long-range Wi-Fi link [28]
operates as a backbone, and a rooftop Wi-Fi mesh network connects
each building or house to the long distance link [35]. This approach
works well for last mile connectivity. However, Wi-Fi use on"last
meter" handsets has disadvantages in terms of power consumption
and interference among mobile handsets, the mesh network, and
the long distance link. Bluetooth access points [21] could serve as
bridges between the Wi-Fi mesh network and mobile handsets.

BlueMonarch could help engineers answer several questionsabout
the viability of Bluetooth access points before a full deployment:

• What are the bandwidth capabilities of such a system? Would
Bluetooth access points provide adequate Internet connectiv-
ity?

• Where should the Bluetooth access points be located to min-
imize the possibility of Wi-Fi interference?

• What handover strategies work well between multiple Blue-
tooth access points?

2.3 Decentralized Applications
Another class of Bluetooth applications are those with a decen-

tralized design, where data exchange occurs between Bluetooth
devices. Existing examples of such applications are multi-player
games [15, 30], Bluetooth dating [19], or cell-phone backup[23,
36]. Today’s evaluations of these prototypes follow the same four-
step plan: (1) recruit Bluetooth devices, (2) instrument them with
the new application code, (3) deploy them, and (4) collect data [11,
34]. Unfortunately, this methodology leads to very small scale eval-
uations unless the recruited devices could also gather datafrom
their interactions with uninstrumented Bluetooth devices. These
interactions are much more abundant: in an evaluation spanning
several months, the number of interactions with uninstrumented de-
vices was two orders of magnitude higher than those between par-
ticipating devices only [15]. Despite the greater number ofthese
interactions, they currently provide little useful data because of the
inability to measure the Bluetooth environment.
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BlueMonarch could enhance the richness of the data collected
from interactions with uninstrumented devices by emulating down-
stream Bluetooth transfers. For example, BlueMonarch could help
measure the duration of cell-phone backup transfers to instrumented
or at-large devices, or BlueMonarch could measure interference
when many people participate in multi-player games.

3. BLUETOOTH NETWORKING PRIMER
Bluetooth, a short-range wireless protocol designed to enable

personal area networks, primarily connects laptops, mobile phones,
cameras, GPS receivers, and headsets. The Bluetooth protocol
specification covers all layers of a typical networking stack, from
baseband to application. Bluetooth operates in the 2.4GHz license-
free ISM radio band. Because this band is shared with many other
radio transmitters – such as 802.11, car security systems, and mi-
crowave ovens – Bluetooth uses rapid frequency hopping (1.6kHz)
across 79 1 MHz channels to reduce the impact of interference.

Bluetooth is complex. Its most recent core specification exceeds
1200 pages [6]. BlueZ [8], the Bluetooth stack included in most
Linux distributions, has over 25K lines of code yet supportsonly a
partial implementation of the Bluetooth specification. We perform
all experiments in this paper on Linux using the BlueZ stack.

3.1 Bluetooth Network Formation
Bluetooth networks are organized into groups calledpiconets,

each of which is limited to eight active devices. A piconet consists
of one masterdevice and one or moreslavedevices. These de-
vices share a frequency hopping sequence that is determinedby the
master’s MAC address and its clock. Bluetooth devices use a two-
step process to interconnect. First,inquiry detects nearby devices:
nodes hop along a special inquiry sequence and broadcast inquiry
messages; other nodes periodically enter inquiry scan modeto hop
along the same sequence listening for inquiry messages.

Second,paginginvolves nodes asking to join an existing piconet
or to form a new one. The node that initiates paging becomes mas-
ter of the resulting piconet. Therefore, arole switchmust occur to
let new devices join an existing piconet. This works as follows:
device N performs inquiry and paging with device M, master ofan
existing piconet. After paging, a new piconet exists with N as mas-
ter and M as slave. These devices then perform a role switch sothat
N becomes a slave in the original piconet where M is master. Role
switching also occurs for other purposes, such as balancingpower
consumption among devices participating in a piconet by periodi-
cally switching masters [29].

3.2 Bluetooth Pairing
The Bluetooth specification defines a simple authenticationpro-

cedure based on the exchange of a shared secret, or “PIN”. Authen-
tication is pair-wise, i.e. between a master and slave. Authentica-
tion between slaves is not supported because piconet slavescannot
communicate directly with each other.

When either the master or a slave requests authentication, ahashed
PIN is used to generate alink key. This key, used in future ses-
sions, usually resides in each device’s persistent storage. The en-
tire PIN challenge-response procedure is calledpairing. On most
embedded devices, pairing requires user participation. Pairing is
completely optional, and it occurs after a piconet has been formed
and in response to a connection request at a higher protocol layer
(e.g. by a file transfer application that requires authentication). The
BlueMonarch mechanism for Bluetooth emulation, based on Ser-
vice Discovery Protocol requests, does not usually requirepairing
because it precedes the establishment of a connection to a higher
level service.

Radio

Service Discovery

Protocol 

(SDP)

Object exchange

(OBEX)

RFCOMM

Baseband / Link controller

Link manager

Host Controller Interface (HCI)

Logical Link Control & Adaptation (L2CAP)

Applications

Figure 1: The Bluetooth Protocol Stack. The SCO layer is not
shown; SCO is used solely for voice transmission between Blue-
tooth devices.

3.3 The Bluetooth Protocol Stack
The Bluetooth core specification [6] defines an entire network

stack ranging from the operation of the baseband radio layerto
application layer protocols( see Figure 1). This section briefly de-
scribes each layer emphasizing those most relevant to BlueMonarch.

3.3.1 The Baseband, Link Manager, and HCI Layers
Thebaseband and link controllerlayer performs medium access

control for theradio layer. It establishes and maintains Bluetooth
connections, including performing and responding to inquiries, form-
ing piconets, and managing master/slave relationships. The link
managerimplements two types of logical links between Bluetooth
devices: (1) synchronous and connection-oriented (SCO), and (2)
asynchronous and connection-less (ACL). SCO links enable voice
connections by supporting regular, periodic exchange of data with
a pre-allocated level of bandwidth; ACL links communicate data
with no real-time requirements. Thehost controller interface (HCI)
is the API between the higher and lower layers of the protocol
stack. It provides a uniform way to access hardware status and
control registers across of variety of Bluetooth devices. This paper
uses packet traces captured at the HCI layer to characterizethe be-
havior of Bluetooth transfers. All layers above the HCI level are
implemented by the host’s Bluetooth stack (the BlueZ [8] stack in
BlueMonarch); lower layers are implemented by the device driver
and hardware for a specific Bluetooth network card.

3.3.2 The L2CAP Layer
The L2CAP layer multiplexes higher-level protocols and appli-

cations across a single ACL link. Unlike ACL, connection-oriented
SCO links bypass the L2CAP layer and are directly accessiblefrom
the application layer. L2CAP lets each higher layer protocol set
its own L2CAP maximum transmission unit (MTU), which can be
set independently for each direction of the ACL connection.The
receiver always sets the MTU and communicates its value to the
sender during connection initiation. The default L2CAP MTUin
Bluetooth is 672 bytes [6]; applications running on top of the BlueZ
Bluetooth stack can adjust the MTU values using socket options.

Although the L2CAP specification [6] defines optional retrans-
mission functionality, many Bluetooth stacks, including BlueZ, do
not implement packet retransmissions [16]. Because Bluetooth is
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used primarily for single-hop links, retransmission functionality
implemented at the baseband layer obviates the need for L2CAP
retransmissions. At the baseband layer, Bluetooth sendersexpect
a frame to be acknowledged during a single timeslot. If the frame
is not acknowledged, the sender continues to retransmit it on the
next channel hop until either a “flush timeout” or “link supervision
timeout” occurs. Flush timeouts, used for time-sensitive data (e.g.,
real-time streaming media), expire when no acknowledgments have
been received from a remote host after a specific amount of time;
the BlueZ Bluetooth stack does not currently support these time-
outs. Link supervision timeouts, which detect total link failures,
expire when no packets of any type are received from a remote host
for a specific amount of time. By default, BlueZ sets the link super-
vision timeout value to 32000 timeslots, or 20 seconds. Whenthe
timeout expires, the baseband layer declares the packet lost, and
the L2CAP layer terminates the connection with an error. In ad-
dition to retransmissions, the L2CAP specification also describes
an optional flow control mechanism that is not supported in many
implementations, including BlueZ.

3.3.3 Service Discovery Protocol (SDP)
The SDP layer lets devices discover each others’ services. When-

ever a new service is installed on a device, the Bluetooth specifica-
tion requires the application to register with the local SDPserver.
Other devices can then connect to this server and search through
service records to determine which services this device supports.

Each transaction in SDP consists of one request protocol data
unit (PDU) and one response PDU. The standard five-byte SDP
header lists the message type field, the PDU’s length, and thetrans-
action ID, which matches response and request PDUs. If an SDP
server receives a ’malformed’ SDP request, it issues an Error Re-
sponse PDU, that contains the standard header plus a two-byte error
code, for a total of seven bytes. The transaction ID in the Error Re-
sponse PDU is set to the transaction ID of the malformed request.

3.3.4 The RFCOMM and OBEX Layers
The RFCOMM layer emulates a serial communication channel

similar to RS-232, so that RFCOMM can support legacy serial port
applications running over Bluetooth. BlueZ’s RFCOMM imple-
mentation supports a credit-based flow control scheme: eachparty
regularly sends a five-byte packet advertising how many RFCOMM
frames it can accept before filling up its buffers.

OBEX is an application-layer protocol for transferring files (e.g.,
an MP3 file, a photograph, or business card) over Bluetooth. Two
devices that want to exchange a file must perform these three steps:

1. The sender must send an SDP request to make sure the re-
ceiver supports OBEX transfers.

2. The receiver answers with an OBEX service record. This
record contains information used to establish an RFCOMM
connection.

3. Once the RFCOMM communication is set up, the sender
segments the file into OBEX packets, sending them one at
a time. The receiver reassembles the incoming OBEX pack-
ets back into a file.

OBEX packets are fragmented into RFCOMM frames, which in
turn are fragmented into L2CAP packets. RFCOMM’s MTU typ-
cially differs from the L2CAP layer’s MTU for RFCOMM. In our
experiments, we discovered that many devices set their RFCOMM
MTU to 1024 and their RFCOMM L2CAP MTU to 1013 or lower.
This MTU mismatch led to fragmentation, where large RFCOMM

frames (1024 bytes) were split into two L2CAP packets. Each frag-
ment also contained an L2CAP start or continuation header, so the
actual RFCOMM payload transmitted in each fragment was 1008
bytes and 16 bytes, respectively. Although the preceding MTU val-
ues are common in practice, they are not universal. For example,
many mobile phones use a 672-byte RFCOMM L2CAP MTU, and
Apple’s Bluetooth stack uses a 32KB SDP L2CAP MTU.

4. DESIGN
This section presents BlueMonarch’s design. We first review

how BlueMonarch emulates Bluetooth transfers at the L2CAP layer.
We then discuss the interface that BlueMonarch provides to facili-
tate simple prototyping of Bluetooth applications. Finally, we de-
scribe the types of probes that BlueMonarch uses, the L2CAP pro-
tocol options that it can emulate, and factors affecting itsaccuracy.

4.1 BlueMonarch Data Transfers
A typical Bluetooth file transfer occurs when a sender on one

device sends small control packets and large data packets toa re-
ceiver on another device, and the receiver responds with small con-
trol packets (Figure 2a). BlueMonarch emulates these exchanges
by sending appropriately sized, malformed SDP packets to the re-
mote device that elicit small SDP responses (Figure 2b). To em-
ulate an L2CAP transfer, BlueMonarch creates both an L2CAP
sender and an L2CAP receiver on thesamelocal device, but in-
terposes between them (see Figures 2c and 2d). BlueMonarch cap-
tures a sender’s packet and sends in its place an identicallysized
SDP packet to the remote device. Upon receiving a response, Blue-
Monarch forwards the original captured packet to the local L2CAP
receiver. Packets in the reverse direction, from the local receiver to
the local sender, are forwarded directly.

BlueMonarch sets the sizes of the outgoing SDP requests to ex-
actly match the sizes of the L2CAP transfer’s actual outgoing data
and control packets. In Section 6.2, we show that the SDP re-
sponses that BlueMonarch receives also closely match in size the
L2CAP transfer’s incoming packets (to within 96% for an OBEX
transfer). As a result, the sender observes similar round-trip times,
delays, and interference for its packet transmissions. Because Blue-
Monarch uses online measurements rather than analytical models
of Bluetooth transfers, the characteristics of transfers emulated by
BlueMonarch closely match those of real Bluetooth transfers.

BlueMonarch currently emulates Bluetooth data transfers in the
downstream direction only, i.e. connections in which data flows
from the BlueMonarch host device to the remote devices. This
mimics the typical usage pattern in which a mobile Bluetoothde-
vice downloads content from a fixed infrastructure Bluetooth de-
vice. Emulating upstream data flows requires small probe packets
to elicit large response packets; ideally, this would require Blue-
Monarch to accurately control response sizes. Although we can
suggest ways to generate large upstream packets (e.g., by craft-
ing SDP queries that produce large responses), we have not imple-
mented upstream capability in our current version of BlueMonarch
and we believe that doing so poses a significant challenge forfuture
versions of BlueMonarch.

Two Bluetooth devices must be initially paired with each other
to perform an OBEX transfer (see Section 3.2). However, Blue-
Monarch uses SDP to emulate transfers and thus the probing de-
vice need not be paired with the receiver to perform its emulated
transfer. Except for pairing, all other stages of an OBEX Bluetooth
transfer, such as inquiry, paging, and data exchange, are present in
a BlueMonarch transfer.

For BlueMonarch to accurately perform data transfers, several
assumptions must hold. For example, we assume that arbitrary
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Figure 2: The BlueMonarch packet exchange. In a normal Bluetooth transfer, small control packets and large data packets flow in one
direction, and small control packets flow in the other (shownin part (a)). BlueMonarch emulates this transfer by using malformed SDP
packets of different sizes that elicit small SDP response packets (shown in part (b)). In a normal transfer, the sender and the receiver are
on different devices (shown in part (c)); however, BlueMonarch places them on the same device and interposes between them (shown in
part (d)). The numbers in parentheses show packet lengths inbytes. For simplicity, we do not show baseband layer acknowledgments.

Bluetooth devices respond to service discovery requests, and that
an accurate emulation of round-trip (rather than one-way) packet
latencies and packet loss is sufficient for an accurate emulation
of Bluetooth transfers. We discuss the factors that affect Blue-
Monarch’s accuracy later in this section.

4.2 BlueMonarch Interface
BlueMonarch does not require applications to be modified in or-

der to be evaluated. It requires only the ability to instantiate the
application sender and receiver on the same device. Thus, Blue-
Monarch exposes an interface that supports all Bluetooth network-
ing and systems calls. Additionally, it does not modify the seman-
tics of these calls; applications need not be aware that BlueMonarch
is emulating their flows.

4.3 BlueMonarch Probes
BlueMonarch uses a specially crafted “malformed” SDP packet

to emulate a Bluetooth transfer. These SDP packets are addressed
to a specific receiver and ask for information about its services.
The SDP transaction ID monotonically increases with each packet
sent. BlueMonarch uses this ID to match outgoing probes with
incoming replies. It sets the SDP probe’s request type to “0x06”
which corresponds to an “SDP Search services and attributes” re-
quest. Normally, this request’s payload should contain descriptions
of the services under inquiry. Instead, BlueMonarch inserts null
data in the packet’s payload and carefully choses the payload size
so that the SDP probe’s size matches the BlueMonarch sender’s
packet size.

Upon receiving a malformed SDP packet from BlueMonarch, a
remote device responds with an SDP error packet whose size is
seven bytes, matching the size of acknowledgments receivedin an
OBEX transfer. Figure 3 illustrates the format of the seven-byte
SDP error packet.

4.4 Bluetooth Devices that Respond to
BlueMonarch Probes

To be accurate, BlueMonarch requires the remote host to respond
to Bluetooth inquiries and to every SDP probe it receives. Ina
previous experiment, we found that many devices in public spaces

PDU type

(1 byte)

Transaction ID

(2 bytes)

Length

(2 bytes)

Error Code

(2 bytes)

Figure 3: The format of the SDP error packet sent by a remote
device to a BlueMonarch probe. The first byte is set to 0x01 –
“SDP Error code”. The last two bytes are set to 0x003 – “Invalid
request syntax”.

were discoverable (i.e., responsive to Bluetooth inquiries) [33]. The
exact percentage of such devices is extremely difficult to determine
experimentally: a Bluetooth-capable device with its radioturned
off is by definition undetectable; one would have to rely instead on
a survey of device owners, which to our knowledge has not been
published. In our experience, Motorola is the only large manufac-
turer that sets their cell-phones to be non-discoverable bydefault.

We also conducted a simple experiment to verify what fraction
of discoverable Bluetooth devices answer every SDP probe they
receive. We sent three SDP probes back-to-back to all discoverable
Bluetooth devices found in one of our University’s cafeterias. The
first and last SDP probes were regular SDP request packets. The
middle probe was the BlueMonarch malformed SDP probe packet.
To determine how many Bluetooth devices respond to these probes,
we measured how many devices responded to the first and last SDP
packets without responding to the middle malformed probe. We
could not include devices responding to the initial SDP request but
not to the last one because we could not distinguish between the
case where the device does not answer BlueMonarch’s malformed
probe and the case where the device moves outside our probing
device’s range during the measurement.

Using this methodology, we conducted a short experiment to
measure 34 devices. Based on their MAC addresses, we inferred
that these devices were made by 16 different manufacturers.Only
BlackBerry devices do not answer SDP probes; instead they first
require their owner to pair. We therefore decided to filter them out
in future experiments; whenever BlueMonarch discovers a Black-
Berry device, it does not attempt to form an SDP connection.
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4.5 Factors that Affect BlueMonarch’s
Accuracy

As noted previously, BlueMonarch is based on round-trip (rather
than one-way) estimates of packet losses. It cannot distinguish
between losses occurring on the downstream link, i.e., fromthe
sending device to the remote device, and those occurring on the
upstream link, i.e., from the remote device to the sender. While
in theory this could cause BlueMonarch to behave differently than
regular Bluetooth transfers, in practice BlueMonarch is not affected
by loss: Bluetooth stack implementations often do not implement
retransmissions instead, as Section 3 presented, losses are handled
by the baseband layer in these Bluetooth stack implementations.

One potential source of BlueMonarch inaccuracy derives from
differences in incoming packet sizes. When data is transferred,
all incoming acknowledgment packet sizes are seven bytes, which
BlueMonarch can match. However, Bluetooth transfers also ex-
change a few small control packets of different sizes (e.g.,4, 5,
8, 11, and 14 bytes) for connection startup and tear-down; Blue-
Monarch cannot match these sizes. Section 6 shows that the small
difference in packet sizes does not have a significant effecton Blue-
Monarch’s accuracy.

As mentioned in Section 3.3.4, a Bluetooth receiver’s RFCOMM
layer occasionally sends flow-control packets. Because these pack-
ets are never solicited by the sender, a BlueMonarch transfer misses
them. However, our evaluation shows that this factor also has neg-
ligible effect on BlueMonarch’s accuracy.

Another source of potential inaccuracy results from the wayBlue-
Monarch and Bluetooth receivers process incoming data. As we
show in Section 6, the behavior of a regular Bluetooth transfer is
influenced by the application running on the receiver. For exam-
ple, some receivers store incoming data only in RAM (e.g., anRSS
feed or a streaming video application); others store it in stable stor-
age (e.g., a song download application). In our experiments, we
found that a transfer to a receiver that stores incoming dataon a
flash card one packet at a time takes 8.2% longer than a transfer
to a receiver that buffers incoming data in RAM and stores it to
disk only at the end of the transfer. Because remote devices an-
swer BlueMonarch’s probes immediately, BlueMonarch transfers
closely match the latter. Although these differences do notdirectly
affect BlueMonarch’s accuracy in emulating the wireless link, they
do affect its accuracy in modeling the end-to-end behavior of Blue-
tooth applications.

Finally, BlueMonarch emulates a Bluetooth transfer by sending
specially formatted SDP requests that elicit small responses from a
remote device. Thus, BlueMonarch can accurately emulate appli-
cations that send out packets and receive small responses. Because
BlueMonarch can control the size of outgoing packets but notof in-
coming responses, it cannot be used for applications that primarily
“pull” data from client devices.

5. IMPLEMENTATION
This section present the details of BlueMonarch’s implementa-

tion. We also describe BlueMonarch’s limitations that arise from
Bluetooth protocol features that are not implemented by theBlueZ
Linux Bluetooth stack. We then discuss the potential security con-
cerns raised by our system and how we addressed them.

5.1 Application Interface to BlueMonarch
We implemented BlueMonarch to facilitate the evaluation ofBlue-

tooth applications. Because the interface BlueMonarch exposes is
identical to that of the standard Bluetooth stack, applications need
no modifications to run over BlueMonarch; they can be evaluated

“out of the box”. Since application-level Bluetooth communica-
tions are ultimately routed through the L2CAP socket layer,Blue-
Monarch can intercept and re-route network flows from any Blue-
tooth application. In fact, we have already ran multiple applications
written in different languages (e.g, C and Python) on top of Blue-
Monarch without modification.

5.2 Bluetooth Transfer Emulation
BlueMonarch is implemented as a Linux 2.6 kernel module. To

emulate a flow to a remote device, the BlueMonarch kernel module
is inserted before the sender and receiver are started in user space.
This module replaces the BlueZ L2CAP layer with BlueMonarch’s
L2CAP, which contains modifications to three L2CAP socket inter-
face calls:connect(), sendmsg(), andclose().

5.2.1 Connect
The L2CAPconnect()call creates an L2CAP socket connection

to a remote device. This call takes as parameters the MAC address
and “Port/Service Multiplexer” (PSM) value of the remote device.
The PSM acts as an endpoint identifier: its value reflects the remote
service to which the sender is trying to connect. For example, in
an OBEX transfer, the sender is trying to connect to the default
RFCOMM server (the layer under OBEX) on a remote device, in
which case the PSM value should, by convention, be three.

BlueMonarch modifies the connect call by changing the PSM to
initiate an L2CAP connection to the remote device’s SDP server,
whose PSM value is one. Once the connection is established, Blue-
Monarch also creates a loopback connection to an L2CAP receiver
on the local device. The implementation maintains a mappingbe-
tween each L2CAP connection to a remote device and its associated
L2CAP loopback connection.

5.2.2 Sendmsg
Our two modifications tosendmsg()involve how we handle the

local sender’s and receiver’s calls. For senders, BlueMonarch queues
L2CAP packets in a local buffer instead of forwarding them. For
each queued packet, BlueMonarch creates a malformed SDP re-
quest of the same size and forwards it to the remote device. Each
SDP request has a unique transaction ID; these IDs match incoming
SDP replies to corresponding requests.

Upon receiving an SDP reply, BlueMonarch dequeues the cor-
responding L2CAP packet and forwards it to the local receiver.
When the local receiver callssendmsg(), BlueMonarch forwards
the L2CAP packets immediately to the local sender. Figure 4 illus-
trates BlueMonarch’s sequence of packet exchanges.

5.2.3 Close
When the local sender callsclose(), BlueMonarch discards all

locally queued data before notifying the local receiver about the
closed connection. We have not alteredclose()behavior for calls
made by the local receiver.

5.3 Unsupported L2CAP Options
BlueMonarch does not support four options described by the

L2CAP Bluetooth specification: (1) packet retransmission;(2) flow
control; (3) connection authorization; and (4) connectionencryp-
tion. While fully documented in the Bluetooth Specification, packet
retransmission and flow control are optional features not imple-
mented by the BlueZ Linux stack. These options may be useful in
applications where low-level Bluetooth retransmissions and high-
level RFCOMM flow control operate in an undesirable way. For
example, when a client device constantly moves in and out of radio
range, it may be preferable for an application to attempt retransmis-
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Figure 4: Sequence of packet exchanges in the BlueMonarch im-
plementation: BlueMonarch consists of a local sender and a local
receiver. It replaces the Bluetooth L2CAP layer in the kernel to
interpose between the sender and receiver. BlueMonarch also re-
places OBEX packets with similarly sized malformed SDP probes
to create the illusion that the remote host is the other endpoint of
the Bluetooth transfer.

sions less frequently than the 1.6kHz rate used by the baseband re-
transmission mechanism, thus freeing up the radio to service other
clients between retransmission attempts. In future work, we plan
to implement these two options in BlueZ and add support for them
in BlueMonarch. We do not anticipate any problems incorporating
packet retransmission and flow control in BlueMonarch.

Bluetooth devices use connection authorization and encryption
for pairing. As part of the pairing protocol, devices exchange a
session key used to encrypt all content exchanged over any future
connection formed between them. Because it requires the coopera-
tion of remote devices, BlueMonarch does not implement pairing.

5.4 Usage Concerns and Best Practices
As is often the case with using active measurement tools, Blue-

Monarch experiments can raise potential privacy and intrusiveness
concerns. Bluetooth devices in the wild could perceive BlueMonarch’s
traffic as hostile and intrusive. Because many of these devices
are power constrained, handling and responding to BlueMonarch’s
probes could cause them to unnecessarily deplete power. To ad-
dress these concerns, we intentionally limited the behavior of our
system running BlueMonarch to limit its impact on other devices.
We believe the guidelines described below are appropriate for other
small-scale public deployments of BlueMonarch.

We limited the amount of communication that BlueMonarch im-
poses on any one device. BlueMonarch never transfers more than
1MB of data to the same device over the course of an experiment.
The power consumed during a 1MB transfer is the same as that con-
sumed using a wireless Bluetooth headset for just over two minutes.
In practice, however, we found that we transferred less than1MB
of data to most devices.

Another cause of concern is the amount of RF interference Blue-
Monarch’s measurements cause to nearby devices. Bluetoothshares
its frequency band with other consumer devices, including Wi-Fi,
microwave ovens, and cordless phones. To mitigate this concern,
we restricted the duration of our BlueMonarch experiments to no
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Figure 5: Distribution of the number of extra packets received by
a regular Bluetooth transfer relative to a BlueMonarch transfer.
In almost all transfers, there are between 1 to 4 extra packets of
RFCOMM flow control messages sent by the receiver. Because
they are unsolicited by the sender, they do not occur in Blue-
Monarch’s transfers.

more than four hours per day at a single location. We relegate
to future work an investigation of interference effects from Blue-
Monarch experiments.

6. EVALUATION
This section presents two experiments designed to evaluateBlue-

Monarch’s ability to emulate Bluetooth flows. First, we investigate
network flow-level characteristics to assess BlueMonarch’s flow-
level accuracy. Second, we evaluate BlueMonarch when running
multiple transfers to multiple receivers to assess its accuracy in pi-
conet mode.

6.1 Methodology
We evaluated BlueMonarch’s accuracy by comparing its flows to

actual Bluetooth flows between the same devices. Performingthis
evaluation on a large-scale is difficult because it requirescontrol
over the software running at both end-points of a Bluetooth flow.
We performed our evaluation by instrumenting the Bluetoothstack
of two classes of devices: laptops and PDAs. Our laptops are Sony
X505s running the BlueZ Bluetooth stack1 in the Linux kernel ver-
sion 2.6.23.1. Our PDAs are Nokia N800s running the Linux kernel
version 2.6.18. On the laptops, we instrumented the defaultLinux
OBEX package calledOBEXFtp; on the PDAs, we experimented
with two different OBEX packages: the one supplied by Nokia and
another Linux package calledsobexsrv[10] that we ported to the
PDAs.

We ran BlueMonarch only on the laptops; we have not yet ported
BlueMonarch to the PDAs. All flows presented in this evaluation
were initiated from one laptop to one or many PDAs. We also
evaluated BlueMonarch using transfers between laptops only, but
brevity precludes our presenting these results; all our laptop-to-
laptop BlueMonarch flows matched their Bluetooth counterparts
perfectly.

Each experiment was split into rounds. In each round, we per-
formed one regular OBEX transfer followed by a BlueMonarch
transfer; we sent 1MB of data in each transfer. We used two differ-
ent setups: “near” and “far”. In the former, we placed the sender
and receiver near each other on a desk. In the latter, we placed the
sender and receiver about 10 meters apart, without line of sight, in
two different rooms in our lab. For each flow, we gathered packet
logs at the HCI layer (i.e., low in the Bluetooth stack); these logs
captured the packets’ sizes, payloads, and timestamps. We repeated

1BlueZ is the default Bluetooth stack in Linux.
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Figure 6: Distribution of the sizes of received packets in regular
Bluetooth transfers. Over 96% of received packets are seven-bytes
long, matching the sizes of received packets in BlueMonarch
transfers. The remaining packets are connection setup and tear-
down control packets of between 4 and 14 bytes.

each experiment 100 times and used all the data to plot our distri-
butions.

6.2 Flow-level Accuracy
Number of Packets. We start by examining the differences be-
tween the number of packets exchanged by a BlueMonarch and a
regular Bluetooth flow. The flows always have an identical num-
ber of sent packets: BlueMonarch is designed to send a probe for
each packet sent by a regular Bluetooth stack. However, the num-
bers of received packets from the remote device (i.e., the Bluetooth
slave) differ between the two flows. In each round, we measured
the number of additional packets received in a regular Bluetooth
transfer relative to a BlueMonarch transfer. Figure 5 presents the
cumulative distributions of these extra packets for both the near and
far setups.

Bluetooth transfers receive one to four additional packetsin al-
most all our rounds. Our examinations revealed that all these pack-
ets were unsolicited RFCOMM control messages that implemented
the RFCOMM flow-control mechanism. Because they are unso-
licited by the sender, they never appear in BlueMonarch’s emulated
flows. The absence of unsolicited packets is a fundamental limita-
tion of BlueMonarch.

Packet Sizes. We also examine whether L2CAP packets of Blue-
Monarch flows are the same size as their Bluetooth counterparts.
As before, we do not present the sizes of the packets being sent be-
cause they match perfectly between BlueMonarch and Bluetooth.
Instead, we present the sizes of the received packets. All Blue-
Monarch received packets are identical because they are replies to
BlueMonarch’s probes; their size is always seven bytes. Forregu-
lar Bluetooth flows, Figure 6 shows the cumulative distributions of
packet sizes for both the near and far setups.

For both setups, 96% of the received packets are seven bytes in
size, identical to the packet sizes of the BlueMonarch flows.The re-
maining packets are either five-byte flow-control RFCOMM pack-
ets or 4 to 14 byte control packets used for OBEX connection setup
and teardown.

Flow Dynamics. We compare the dynamics of BlueMonarch to
Bluetooth flows by plotting the number of bytes transfered bythe
flow over its lifetime. Figure 7 (left side) illustrates the dynamics of
two such flows that were run in one of our rounds chosen at random;
the remaining 99 rounds show results consistent with these.

Our results show that Bluetooth’s transfer rate is slower than
BlueMonarch’s: the BlueMonarch flow finishes a full two seconds

earlier. We investigated the causes of this difference by examining
the Nokia OBEX package running on the N800 PDA. One differ-
ence we found was that the PDA performed asynchronous write
as soon as new data was received by the OBEX layer. In contrast,
BlueMonarch flows never trigger any write operations by the re-
mote device.

Unfortunately, we could not change this behavior because we
did not have access to the source code for Nokia’s OBEX package.
Instead, we ported a Linux OBEX package (sobexsrv[10]) to the
PDA. This package buffers all received packets and performsone
singlewrite operation at the end of the Bluetooth transfer.

Figure 7 (right side) compares the BlueMonarch flow to the Blue-
tooth flow running the ported OBEX package. These results show
that the flow dynamics of BlueMonarch and Bluetooth are almost
identical. The BlueMonarch flow still finishes earlier but only by
120 milliseconds. We believe that this difference is attributable to
the additional packet processing performed by a full-blownBlue-
tooth receiver; in contrast, much less packet processing isdone by
a BlueMonarch receiver.

6.3 Piconet Accuracy
When sending data to multiple receivers, a Bluetooth master

must form a piconet. In a piconet, the master sends data to each
receiver one packet at a time in a round-robin fashion. To evaluate
BlueMonarch’s accuracy in piconet mode, we performed the fol-
lowing experiment. We set up a sending device to transmit a very
large file to each slave joining its piconet. We set up six PDAs
as slaves to join the piconet one by one, every 90 seconds. We
measure the transfer rate of the initial flow established between the
master and the first joining slave and we plot how this rate changes
over time in Figure 8. The PDAs ran the Linux OBEX package that
produced accurate results in earlier experiments.

Our results show that the transfer rate to the first slave PDA de-
creases over time; the rates measured (in Kbps) are 320, 220,166,
152, 124, and 103 for piconets with 1, 2, 3, 4, 5, and 6 slaves, re-
spectively. Although the transfer rates change over time, they are
very similar between BlueMonarch and Bluetooth flows.

6.4 Summary
Our results demonstrate that BlueMonarch is accurate: its em-

ulated flows behave similarly to Bluetooth flows with respectto
the number of packets exchanged and packet sizes. We also found
that the flow dynamics are similar, too, but only when the Blue-
tooth receiver does not have to perform synchronous writes to a
slow storage device, such as a flash card. Finally, we found that
BlueMonarch is accurate when running in piconet mode.

7. A CONTENT DELIVERY SYSTEM
PROTOTYPE

We used BlueMonarch to implement a prototype of a Bluetooth-
based content delivery system that could have many uses. For
example, vendors and advertisers could use it to deliver adsor
coupons for nearby stores to attract potential customers. Airlines
could use it to inform their passengers about delays or deliver board-
ing passes and receipts directly to passengers. News companies
could deliver RSS feeds of news articles and weather forecasts us-
ing such a system. And instructors could use it to deliver course
materials and assignment solutions to their students without need-
ing to post them on password-protected websites.

Our system’s design is very simple. We use a dedicated serverlo-
cated in a busy place to deliver content over Bluetooth to allnearby
receiving devices. Despite its simplicity, remarkably little is known
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about how such a system would behave in practice. The difficulty
of evaluating Bluetooth systems in the wild has left many important
questions unanswered:

1. How many people can receive data from such a system? Can
a stationary server reach more people than a mobile one?

2. How much data can a Bluetooth content delivery system send
opportunistically to nearby devices, such as cell-phones,PDAs,
and laptops? Could this system deliver large-sized data, such
as songs?

3. How important is the location of servers to the delivery of
large amounts of data to many people?

BlueMonarch shed light on these questions quickly and with lit-
tle effort, proving the benefits of using BlueMonarch to prototype
Bluetooth systems in the wild. We now describe our experiments’
methodology and present a set of preliminary answers to the pre-
ceding questions. We leave a long-term evaluation of a Bluetooth
content delivery system as future work.

7.1 Methodology
We implemented a multi-threaded Bluetooth server in Python

and reserved one thread to discover nearby Bluetooth devices. Our
system issues Bluetooth inquiries periodically, performing an in-
quiry scan for 10 seconds with an interval of 20 to 30 seconds be-
tween scans. Making the inquiry period random rather than static

Figure 9: The Bluetooth content delivery server: We used a Sony
Vaio X505 laptop equipped with four Bluetooth radios to serve
content to all passing Bluetooth devices. One Bluetooth radio
was responsible for discovering new devices, while the remain-
ing three used BlueMonarch to serve content to all discovered
devices.

is a deliberate design choice to reduce the likelihood of colliding
inquiries from multiple inquiring devices. When a device isdis-
covered, our application forks a new thread that runs BlueMonarch
to it. We configured BlueMonarch to emulate sending 1MB of data
to each discovered device. We did not experiment with different
settings for the inquiry scan duration and periodicity. Thevalues
used in our experiments were selected to be similar to the ones
used by previous experiments with Bluetooth [11] and to meetour
energy constraints.

Our application uses a Sony X505 laptop running the BlueZ
Bluetooth stack in Linux kernel 2.6.23.1. Our laptop is equipped
with four Class 1 (i.e., with a range of 100 meters) Bluetoothradios.
We reserve one of the radios to the thread running Bluetooth dis-
covery. We emulate BlueMonarch transfers on the remaining three
radios, allocating them in a round-robin manner. Figure 9 shows
our Bluetooth content delivery server.

We deployed our Bluetooth content delivery server in two differ-
ent locations: inside of a mall (Eaton Centre in downtown Toronto)
and in a subway system (the Toronto Subway System). We col-
lected two traces at each location: a stationary one and a mobile
one. In the mall, we gathered the stationary trace by placingour
server in the center of the mall’s food court. We collected the mo-
bile trace by carrying the server and walking casually without en-
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40MB
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Mobile Server
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61KB

29MB
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107KB526KBAverage Data Sent per Device

39.57 seconds65.28 secondsAverage Connection Duration

37MB
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07/11/2008 16:32 EST

07/11/2008 15:06 EST

Stationary Server

07/28/2008 16:08 ESTStart Time

07/28/2008 17:44 ESTEnd Time

1 hour, 36 minutesDuration

14MBTotal Data Sent

51# of Successful Connections

137# of Devices Discovered

Mobile Server

Table 1: Summary statistics for the four traces: We prototyped our system in two locations, inside Eaton Centre (a mall in downtown
Toronto) and in the Toronto subway system. We created a “stationary” scenario by placing the server in the center of the mall’s food
court and in a busy subway station, and a “mobile” scenario bycarrying the server around the mall and riding the subway.

tering any stores. On the subway, we gathered the stationarytrace
by placing the server in a busy corridor near the subway platform
at Union Station, the largest commuter hub in Toronto’s downtown
core. We collected the mobile trace by riding a crowded subway
car but remaining still inside the car. Each trace spanned about 90
minutes and was collected at roughly the same time of day, buton
different weekdays. Table 1 shows high-level statistics ofall our
four traces.

7.2 Results
We use the devices’ MAC addresses as a rough approximation

of the number of people who receive data from our system. As Ta-
ble 1 shows, our server sent data to 58 people inside the mall when
stationary, and 71 people when mobile. However, fewer people re-
ceived the entire 1MB of data: 30 people (51%) when stationary
and 27 people (38%) when mobile.

Our findings are even more interesting when riding the subway.
Our server discovered 490 people when placed on a subway plat-
form. However, we sent data to only 184 people (38%). This low
rate of success is most likely due to the environment; when a sub-
way train arrives in the station, many people get off and quickly
exit the station. In such a crowded environment, our server could
discover a large client population but had little opportunity to send
data to many of them.

Table 1 shows that the location and the stationarity of the server
are very important to the success of the system. Our system sent
more data when placed in a mall (37MB stationary and 40MB mo-
bile) than when placed in the subway (29MB stationary and 14MB
mobile). While being stationary or mobile made little difference
inside the mall, placing our server in the subway station rather
than inside a subway car drastically increased the number ofpeople
reached and the amount of data delivered.

Figure 10 provides a breakdown of Bluetooth devices discovered
in each trace based on their manufacturer. To plot this graph, we
used an online site that maps MAC addresses to device manufactur-
ers [9] and excluded those devices whose manufacturers werenot
found by this online site. While Sony Ericsson and Nokia together
account for about two-thirds of all devices found, our client popu-
lation is very heterogeneous: we found between 9 and 15 manufac-
turers in each trace. As described in Section 4.4, our BlueMonarch
implementation filters out BlackBerry devices because theyrequire
pairing before answering our SDP probes.

We also found different SDP MTU settings for the devices we
discovered. Figure 11 presents the distribution of the MTUsfound
in each of the four traces. An MTU of 672 bytes was the most
popular setting used by more than 80% of all discovered devices.
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Figure 10: Breakdown of devices by their manufacturer: There
are 12 manufacturers in the Mall Stationary trace, 9 in Mall Mo-
bile, 15 in Subway Stationary, and 10 in Subway Mobile. Sony
Ericsson and Nokia together account for about two-thirds ofall
devices discovered.

The second most popular MTU setting was much smaller, only 256
bytes. These results suggest that a content delivery systemmust be
able to handle a diverse client population with very heterogeneous
hardware and software characteristics.

To examine in-depth how much data our system delivered, Fig-
ure 12 plots the cumulative distribution of the amount of data sent
in each trace. We can see that our two environments produced very
different results. Our system could send at least 100KB to 66% of
the devices discovered in the mall when either stationary ormo-
bile. However, it could send the same amount of data to only 15%
of devices discovered in the subway. This suggests that a Bluetooth
content delivery system intended to deliver tens of KBytes (e.g., a
RSS feed delivery system2) could be successful when placed in a
mall but not in the subway.

We also examined the data-rates of the Bluetooth connections
in all four traces. We divided each flow into one second intervals,
computed the data-rate for each interval, and averaged these num-
bers to measure the average flow data-rate. Figure 13 presents the
results. On average, the data-rates inside the mall were more than
a factor of two higher than those in the subway. These findings
suggest that the subway was a much worse delivery medium for
Bluetooth than the mall. Unlike the mall, it is crowded and a tight
space. We further hypothesize that our server did not have line of
sight to most of the clients discovered in the subway, unlikein the
mall.

2100KB of data is sufficient to send about 17 RSS feed up-
dates [22].
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Figure 11: Breakdown of devices by their SDP MTU: While more
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7.3 Summary
Our BlueMonarch-based evaluation shed light on the performance

of a content delivery system for Bluetooth. We found that:

1. A Bluetooth content delivery server can deliver tens of megabytes
of data to tens to hundreds of people in just over an hour. To
a single user, such a system can deliver tens to hundreds of
KBytes, making it very difficult to distribute large-sized data,
such as songs.

2. The server’s location is hugely important to the needs of the
system. For example, for delivering RSS feeds, the server
should be placed inside of a mall rather than in a subway sys-
tem. In contrast, for an event notification system that needs
to deliver very little data, it is more important to increasethe
number of people reached by our system; in such a case, a
subway system is a better venue than a mall.

3. The client population of such a system has very heteroge-
neous hardware and software characteristics. Client devices
are made by many different manufacturers with different Blue-
tooth software settings, such as different MTUs. A content
delivery system therefore needs to be robust in the face of
this large degree of heterogeneity.

8. RELATED WORK
The first part of this section describes related work pertaining to

the development of measurement techniques similar to thoseused
in BlueMonarch. The second part describes prior work on develop-
ing Bluetooth applications.
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Figure 13: The average data-rate of the Bluetooth flows in each
of the four traces: To measure the average data-rate of each flow
we divide the flow in one second intervals, we compute the data-
rate for each interval, and we average these numbers.

8.1 Measurement Techniques
BlueMonarch’s measurement techniques are inspired by those

used in Monarch, a tool for emulating TCP transfers to Internet
hosts without the need for their cooperation [14]. Monarch uses
large TCP probes, such as TCP ACK packets, that are deliberately
enlarged by appending a dummy payload. These probes often elicit
TCP RST responses. By sending large packets to a remote host
that are answered with short TCP RST packets, Monarch accurately
emulates a TCP flow that transfers data to a remote host.

Other Internet measurement tools use existing protocols inunan-
ticipated ways to perform measurements that were previously in-
tractable. Sting [32] manipulates the TCP protocol to measure
packet loss. T-BIT [27, 25] exploits the TCP protocol to charac-
terize Web servers’ TCP behavior. King [13] uses DNS queriesto
measure latencies between two arbitrary DNS servers. SProbe [31]
sends packet pairs of TCP SYN packets to measure bottleneck band-
width to uncooperative Internet hosts. Like BlueMonarch, these
tools send carefully crafted packet probes to remote hosts to mea-
sure network properties.

Several previous measurement studies gathered traces to study
Bluetooth devices’ mobility patterns and interactions [11, 34]. Blue-
Monarch could augment this work by providing more in-depth mea-
surements of path properties to these devices.

8.2 Bluetooth Applications
Bluetooth location-aware applications make use of positional cues

to adapt their functionality based on users’ locations. Existing ex-
amples of Bluetooth location-aware applications developed by both
research and industry include advertising systems [1, 12, 17, 5, 2],
games [15, 30], and dating services [19]. BlueMonarch couldhelp
these application designers evaluate their applications in the wild.

Another class of previous work has incorporated Bluetooth to en-
hanced the accuracy of localization algorithms because of its short
range. For example, [24] evaluated a fine-grained Bluetoothlocal-
ization system and found it to be accurate to within 3 centimeters
95% of the time. More recently, [4] designed a localization system
that uses Bluetooth in addition to other wireless interfaces, such as
Wi-Fi and 3G. As before, BlueMonarch could help in evaluating
these Bluetooth-based localization schemes. For example,these
systems could use BlueMonarch to shed light on the Bluetoothnet-
work environment for devices participating in localization.

9. CONCLUSIONS
This paper presents BlueMonarch, a system for evaluating last

meter applications running over Bluetooth in the wild. BlueMonarch
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offers a key abstraction: the ability to emulate a Bluetoothtransfer
to any devices that respond to Bluetooth inquiries. BlueMonarch
is highly accurate: our experiments show that its transfersmatch
regular Bluetooth transfers with respect to the number of packets
exchanged, their sizes, transfer rates, and behavior when operating
in a multi-device piconet.

With BlueMonarch, we prototyped a content delivery system for
Bluetooth. With a single laptop equipped with four Bluetooth ra-
dios, we transmitted tens of megabytes of data to hundreds ofBlue-
tooth devices in just over an hour. Our evaluation also shed light
on a number of previously open issues regarding Bluetooth content
delivery capabilities and requirements.

As a final note, we hope that BlueMonarch’s future users will
carefully construct their studies in a way that minimizes any side-
effects arising from its use. Our safeguards (presented in Sec-
tion 5.4) worked well for our limited deployment of BlueMonarch.
For larger deployments, we recommend consulting organizations
that handle the ethical issues arising from performing research ex-
periments, such as an academic ethical review board.
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