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ABSTRACT

Despite Bluetooth’s popularity, low cost, and low poweruieer
ments, Bluetooth applications remain remarkably unsdjaaited.
Although the research community and industry have desigaets,
cell-phone backup, and contextual advertising systents Blite-
tooth, few such applications have been prototyped or evetlan
a large scale. Evaluating Bluetooth applications requiresruit-
ing devices in the wild and developing robust software that c
adapt to the heterogeneity of these devices. These rearitsm
have limited both the number and the magnitude of the expetsn
with Bluetooth applications.

This paper proposes BlueMonarch, a system for evaluating-Bl
tooth applications in the wild. BlueMonarch emulates a Bba¢h
transfer to any device responding to Bluetooth Service dvisty
requests; because many cell-phones, laptops, and PDAs initth
respond to such probes, BlueMonarch enables quick pratagyp
of Bluetooth applications in the wild, to hundreds of unrfiedi
Bluetooth devices. After we present the feasibility andiesmzy of
BlueMonarch, we use BlueMonarch to evaluate a content elgliv
system for Bluetooth. With BlueMonarch, we evaluated ostesy
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Bluetooth interfaces consume an order of magnitude lesepow
than Wi-Fi and are very inexpensive. The manufacturing obst
a Bluetooth radio is roughly one third of that of Wi-Fi [37].

Yet, despite its popularity, low cost, and low power requieats,
Bluetooth is used today primarily to perform three simplgksa
synchronizing address books, connecting wireless heatiseell-
phones, and connecting laptops to the Internet via a celivphip-
link. Both research and industry have developed more stipdiied
Bluetooth applications, such as content delivery systerd gell-
phone backup [23, 36], contextual advertising systems [12]5
games [30, 3, 15], and social software [19]. However, none of
these systems has enjoyed widespread deployment.

We cannot claim to understand all the reasons for this lack of
success. However, we believe that one significant factbeighor-
mous effort that developers must make to prototype and at&lu
Bluetooth applications in the wild. First, recruiting agarnum-
ber of participating devices poses a hardship. Second tdgitle
devices have extremely heterogeneous hardware and sefi8&ir
which makes it difficult to develop robust application codéird,
performing a representative evaluation of a Bluetooth iappibn

inside a mall and a subway system; we were able to send tens of’€quires repeating the experiment in different contextsabse the

megabytes of data to hundreds of Bluetooth devices in jusiie |
over an hour.
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1. INTRODUCTION

Bluetooth is more popular, cheaper, and consumes less powe
than Wi-Fi. Recent news reports estimate that one billion- co

sumers own Bluetooth devices [7], and within a few years ®loid-
enabled devices are predicted to outnumber Wi-Fi five to 86¢ [
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application behavior is extremely sensitive to its exemutiontext
and environment. These challenges have significantlydurilue-
tooth application experimentation. The absence of laogdes in-
the-wild deployments has in turn cast doubt over the vighof
sophisticated Bluetooth applications.

This paper takes a modest step toward reducing the effodenee
to prototype Bluetooth applications. We present BlueMohaa
system for evaluating Bluetooth applications in the wildlud3
Monarch emulates a Bluetooth transfer to any device thagtisos
respond to Bluetooth inquiries. Because many cell-phdPBg\s,
and laptops in the wild respond to such probes, researclagrs c
use BlueMonarch to emulate transfers to a diverse set otegvi
This functionality makes BlueMonarch useful for evalugtanlarge
class of Bluetooth applications, those in which a local seunder
the experimenter’s control sends data to any remote densser-
ing Bluetooth inquiries. By requiring control of just onevite
of the two end points of a Bluetooth link, BlueMonarch enable
evaluations of Bluetooth applications to tens or even heaslof
Bluetooth devices.

BlueMonarch’s measurement technique is inspired by Mdnarc
a tool for emulating TCP transfers to Internet hosts wittrequir-
ing their cooperation [14]. BlueMonarch shares Monarcke's &b-
servation about how transfer protocols work: a senderfieandata
to a receiver in arbitrarily sized packets (typically lartfeat are an-
swered with small-sized acknowledgment packets. Blueldna
uses generic Bluetooth discovery probes and responsesulatem
this packet exchange between a sending device under thei-expe



menter’s control and any remote device that is discoveraBk
cause devices need not cooperate, BlueMonarch signifyciamtt
ers the barrier for the evaluation of Bluetooth applicagiorTo
understand the extent of our system'’s practicality, we [Blee-
Monarch to evaluate a content delivery system prototypeudihg
a single laptop equipped with four Bluetooth radios, wegraitted
tens of megabytes of data to hundreds of Bluetooth devictgein
wild in just a little over an hour.

BlueMonarch’s accuracy stems from its direct online measur
ments. For every packet transmitted in its emulated tranBfee-
Monarch sends an actual probe packet of the same size to-the re
ceiving device and interprets the response packet as amingo
acknowledgment. Thus, emulated transfers are subjectéaeto
same wide range of conditions as real Bluetooth transfiecfyd-
ing interference, frame losses, and retransmission detéywever,
because BlueMonarch controls only one device, it can etima
conditions for the round-trip link but not the one-way linke-
spite this limitation, our evaluation shows that packetldraces
of transfers emulated with BlueMonarch closely match d@&iwse-
tooth transfers.

BlueMonarch enhances the state of the art in evaluating-Blue
tooth applications. Researchers currently evaluate thppéca-
tions by running them in simulators or in controlled envimants [23,
1, 36]. In contrast, BlueMonarch provides live access teRiath
devices in the wild. This permits experimentation in reaisce-
narios for which emulators are not widely available and aaled
experiments are not representative. BlueMonarch captheesig-
nal propagation characteristics, obstructions, andference that
exist in deployed systems. Additionally, software develspcan
test and debug the performance and reliability of Bluetagilica-
tions to uncover bugs, performance bottlenecks, or podicaion
design decisions.

We organized this paper to meet the needs of readers who-are un
familiar with Bluetooth. Section 2 identifies several Blosth ap-
plications that could be successfully evaluated using Rlusarch.
Section 3 presents a short primer on Bluetooth that readeriir
with Bluetooth can skip. We present the design of BlueMolnmanc
Section 4, discuss implementation details in Section 5gantliate
BlueMonarch’s accuracy in Section 6. Section 7 shows thatees
obtained when we used BlueMonarch to evaluate a conterw-deli
ery system prototype for Bluetooth. We describe the relatedk
in Section 8 and summarize our conclusions in Section 9.

2. BLUETOOTH APPLICATIONS

BlueMonarch emulates only those Bluetooth transfers irctvhi
data is sent from a local device to any device in the wild. Blue
Monarch cannot emulate upload transfers — those in which idat
received from devices in the wild. Despite this limitatidlue-
Monarch enables the evaluation of many classes of Bluetpth
plications, three of which are now described.

2.1 Opportunistic Content Delivery

There is enormous interest in applications that delivea dgt
portunistically over Bluetooth. Examples include adsn sys-
tems [1, 12, 17, 5, 2], bulk-data content delivery [18], ostsyns
that deliver contextual information, such as bus sched@@kor
environment monitoring information [26]. By placing sersen
urban crowded environments, these applications couldetaiiata
to many passers-by at low cost to both users and content geosiu

Before deployment, advertisers and content producersi gaulge
the effectiveness of their application by answering sévgues-
tions, such as:

e Where should content delivery servers be placed to be most
effective? The answer depends on the application; for exam-
ple, some applications are optimized to reach as many users
as possible, while others must ensure that passers-bymemai
in range long enough to receive a full copy of the data.

Once deployed, how much data will the average user receive
from the server? For example, an advertiser should know if
there is ample opportunity to deliver ads that include seund
tracks.

e How should the server be provisioned? For example, how

many Bluetooth radios should a server have?

Advertisers could use BlueMonarch to setup a server thatdvou
emulate the data transfer to passers-by and thereby heddighe
on these questions prior to full system deployment.

2.2 Bluetooth Access Points

When used at home, modern handheld devices have two ways to
connect to the Internet: using 3G or using Wi-Fi. Neitheriapt
is ideal: 3G has long latencies and its coverage is spottyt-Mé
power hungry. Bluetooth provides an attractive Internetnestiv-
ity alternative for mobile devices because it consumes pesger
than Wi-Fi, has better latencies than 3G, and is simple ttoglep

Another potential scenario for the deployment of Bluetcath
cess points is bringing Internet connectivity to areas witHand-
line or cellular infrastructure. Typically, a long-range-W link [28]
operates as a backbone, and a rooftop Wi-Fi mesh networlectsin
each building or house to the long distance link [35]. Thigrapch
works well for last mile connectivity. However, Wi-Fi use tiast
meter" handsets has disadvantages in terms of power cotisnmp
and interference among mobile handsets, the mesh netwadk, a
the long distance link. Bluetooth access points [21] coelde as
bridges between the Wi-Fi mesh network and mobile handsets.

BlueMonarch could help engineers answer several questiomst
the viability of Bluetooth access points before a full dgphent:

e What are the bandwidth capabilities of such a system? Would
Bluetooth access points provide adequate Internet comnect
ity?

e Where should the Bluetooth access points be located to min-
imize the possibility of Wi-Fi interference?

e What handover strategies work well between multiple Blue-
tooth access points?

2.3 Decentralized Applications

Another class of Bluetooth applications are those with a&dec
tralized design, where data exchange occurs between Blheto
devices. Existing examples of such applications are nplétyer
games [15, 30], Bluetooth dating [19], or cell-phone bac@f
36]. Today’s evaluations of these prototypes follow the sdour-
step plan: (1) recruit Bluetooth devices, (2) instrumeenthwith
the new application code, (3) deploy them, and (4) colletz fiHL,
34]. Unfortunately, this methodology leads to very smadlls@val-
uations unless the recruited devices could also gatherfoata
their interactions with uninstrumented Bluetooth devic@$hese
interactions are much more abundant: in an evaluation &pgnn
several months, the number of interactions with uninstntesde-
vices was two orders of magnitude higher than those betwaen p
ticipating devices only [15]. Despite the greater numbethefse
interactions, they currently provide little useful datzéese of the
inability to measure the Bluetooth environment.



BlueMonarch could enhance the richness of the data cotlecte
from interactions with uninstrumented devices by emutatiown-
stream Bluetooth transfers. For example, BlueMonarchdcbalp
measure the duration of cell-phone backup transfers timsnted
or at-large devices, or BlueMonarch could measure intenfes
when many people participate in multi-player games.

3. BLUETOOTH NETWORKING PRIMER

Bluetooth, a short-range wireless protocol designed tdlena
personal area networks, primarily connects laptops, ragibnes,
cameras, GPS receivers, and headsets. The Bluetooth grotoc
specification covers all layers of a typical networking ktefcom
baseband to application. Bluetooth operates in the 2.4@dade-
free ISM radio band. Because this band is shared with margr oth
radio transmitters — such as 802.11, car security systemasié
crowave ovens — Bluetooth uses rapid frequency hoppingkzd
across 79 1 MHz channels to reduce the impact of interference

Bluetooth is complex. Its most recent core specificatioreerls
1200 pages [6]. BlueZ [8], the Bluetooth stack included instmo
Linux distributions, has over 25K lines of code yet supportty a
partial implementation of the Bluetooth specification. Véefprm
all experiments in this paper on Linux using the BlueZ stack.

3.1 Bluetooth Network Formation

Bluetooth networks are organized into groups caldécbnets
each of which is limited to eight active devices. A piconetsists
of one masterdevice and one or morglavedevices. These de-
vices share a frequency hopping sequence that is deterimjrbe:
master’s MAC address and its clock. Bluetooth devices usea t
step process to interconnect. Filisiguiry detects nearby devices:
nodes hop along a special inquiry sequence and broadcastying
messages; other nodes periodically enter inquiry scan twolaep
along the same sequence listening for inquiry messages.

Secondpaginginvolves nodes asking to join an existing piconet
or to form a new one. The node that initiates paging becomas ma
ter of the resulting piconet. Thereforerae switchmust occur to
let new devices join an existing piconet. This works as fefio
device N performs inquiry and paging with device M, masteaof
existing piconet. After paging, a new piconet exists withd\nzas-
ter and M as slave. These devices then perform a role switdtaso
N becomes a slave in the original piconet where M is mastele Ro
switching also occurs for other purposes, such as balampangr
consumption among devices participating in a piconet byoder
cally switching masters [29].

3.2 Bluetooth Pairing

The Bluetooth specification defines a simple authenticaiion
cedure based on the exchange of a shared secret, or “PINfeAut
tication is pair-wise, i.e. between a master and slave. énttba-
tion between slaves is not supported because piconet slavest
communicate directly with each other.

When either the master or a slave requests authenticatiased
PIN is used to generatelmk key This key, used in future ses-
sions, usually resides in each device’s persistent storéije en-
tire PIN challenge-response procedure is caflaifing. On most
embedded devices, pairing requires user participationringas
completely optional, and it occurs after a piconet has beemdd
and in response to a connection request at a higher protaget |
(e.g. by afile transfer application that requires authatit). The
BlueMonarch mechanism for Bluetooth emulation, based an Se
vice Discovery Protocol requests, does not usually requaigng
because it precedes the establishment of a connection gharhi
level service.

| Applications |
I
Object exchange

(OBEX) Service Discovery
I Protocol
| RFCOMM | (SDP)
I

| Logical Link Control & Adaptation (L2CAP) |
I

| Host Controller Interface (HCI)
1

|

| Link manager |
|

| Baseband / Link controller |

|

|
| Radio

Figure 1. The Bluetooth Protocol Stack. The SCO layer is not
shown; SCO is used solely for voice transmission betweeneBlu
tooth devices.

3.3 TheBluetooth Protocol Stack

The Bluetooth core specification [6] defines an entire networ
stack ranging from the operation of the baseband radio layer
application layer protocols( see Figure 1). This sectigaflyrde-
scribes each layer emphasizing those most relevant to Blnahkdh.

3.3.1 The Baseband, Link Manager, and HCI Layers

Thebaseband and link controlldayer performs medium access
control for theradio layer. It establishes and maintains Bluetooth
connections, including performing and responding to irigaj form-
ing piconets, and managing master/slave relationshipse lifik
managerimplements two types of logical links between Bluetooth
devices: (1) synchronous and connection-oriented (SQt@)(2)
asynchronous and connection-less (ACL). SCO links enatitzev
connections by supporting regular, periodic exchange t déth
a pre-allocated level of bandwidth; ACL links communicatdad
with no real-time requirements. Thest controller interface (HCI)
is the API between the higher and lower layers of the protocol
stack. It provides a uniform way to access hardware statds an
control registers across of variety of Bluetooth devicdsispaper
uses packet traces captured at the HCI layer to charactaezse-
havior of Bluetooth transfers. All layers above the HCI lexee
implemented by the host’s Bluetooth stack (the BlueZ [8tlsia
BlueMonarch); lower layers are implemented by the devicesdr
and hardware for a specific Bluetooth network card.

3.3.2 The L2CAP Layer

The L2CAP layer multiplexes higher-level protocols andlapp
cations across a single ACL link. Unlike ACL, connectioneoted
SCO links bypass the L2CAP layer and are directly acceshitne
the application layer. L2CAP lets each higher layer proteed
its own L2CAP maximum transmission unit (MTU), which can be
set independently for each direction of the ACL connecti®he
receiver always sets the MTU and communicates its valuedo th
sender during connection initiation. The default L2CAP MiJ
Bluetooth is 672 bytes [6]; applications running on top & BlueZ
Bluetooth stack can adjust the MTU values using socket ngtio

Although the L2CAP specification [6] defines optional retan
mission functionality, many Bluetooth stacks, includiny®&, do
not implement packet retransmissions [16]. Because Bitletis



used primarily for single-hop links, retransmission fuoeality frames (1024 bytes) were split into two L2CAP packets. Eeaaty-f
implemented at the baseband layer obviates the need for B2CA ment also contained an L2CAP start or continuation headeghes
retransmissions. At the baseband layer, Bluetooth sercect actual RFCOMM payload transmitted in each fragment was 1008
a frame to be acknowledged during a single timeslot. If taenfr bytes and 16 bytes, respectively. Although the precedingMal-

is not acknowledged, the sender continues to retransmit the ues are common in practice, they are not universal. For ebeamp
next channel hop until either a “flush timeout” or “link supision many mobile phones use a 672-byte RFCOMM L2CAP MTU, and
timeout” occurs. Flush timeouts, used for time-sensitigmde.g., Apple’s Bluetooth stack uses a 32KB SDP L2CAP MTU.

real-time streaming media), expire when no acknowledgsieae
been received from a remote host after a specific amount eftim 4. DESIGN
the BlueZ Bluetooth stack does not currently support these-t
outs. Link supervision timeouts, which detect total linkuees,
expire when no packets of any type are received from a renuste h
for a specific amount of time. By default, BlueZ sets the linges-
vision timeout value to 32000 timeslots, or 20 seconds. When
timeout expires, the baseband layer declares the packetalod
the L2CAP layer terminates the connection with an error. dn a

dition to retransmissions, the L2CAP specification alsacrdbes 4.1 BlueMonarch Data Transfers
an optional flow control mechanism that is not supported inyna A typical Bluetooth file transfer occurs when a sender on one

implementations, including BlueZz. device sends small control packets and large data packetseo

3.3.3 Service Discovery Protocol (SDP) ceiver on another device, and the receiver responds with som
. : . trol kets (Fi 2a). BlueM h lates th EgER
The SDP layer lets devices discover each others’ servickgnw rol packets (Figure 2a). BlueMonarch emulates these

Lo . e by sending appropriately sized, malformed SDP packetseaeh
ever a new Service I !nstglled on a_dewce_, the Bluetootbifspe- mote device that elicit small SDP responses (Figure 2b). rifo e
tion requires the application to register with the local Sé&ver.

Other devi th t 10 thi d ulate an L2CAP transfer, BlueMonarch creates both an L2CAP
er devices can then connect 1o this Server an _searah\glll 0 sender and an L2CAP receiver on tsemelocal device, but in-
service records to determine which services this devicpatgR

o : t bet th Fi 2c and 2d). BlueMonapeh
Each transaction in SDP consists of one request protocal dat erposes between them (see Figures 2c an ). BlueMo ¢

. . tures a sender’s packet and sends in its place an ident&iaty
unit (PDU) and one response PDU. The standard five-byte SDP : .
header lists the message type field, the PDU’s length, arirthe: SDP packet to the remote device. Upon receiving a respomhse; B

- . Monarch forwards the original captured packet to the lo@CAP
action ID, V‘.'h'Ch n?atches resPonse and requ_e_st PDUs. If an SDF'receiver. Packets in the reverse direction, from the lcazgiver to
server receives a 'malformed’ SDP request, it issues arr Reo

. the local sender, are forwarded directly.
sponse PDU, that contains the standard header plus a teebgr . .
code, for a total of seven bytes. The transaction ID in therHRe- BlueMonarch sets the sizes of the outgoing SDP requests to ex

. : actly match the sizes of the L2CAP transfer’s actual outgaiata
sponse PDU is set to the transaction ID of the malformed que and control packets. In Section 6.2, we show that the SDP re-

3.3.4 The RFCOMM and OBEX Layers sponses that BlueMonarch receives also closely match intbe
. L L2CAP transfer's incoming packets (to within 96% for an OBEX
The RFCOMM layer emulates a serial communication channel

. . transfer). As a result, the sender observes similar rotipditnes,
S|m|II.ar t9 RS'ZSZ’. so that RﬁCOMI\ﬂlcanlsupPort Iecg:jgcy se.uetl Ip delays, and interference for its packet transmissionsa@szBlue-
applications running over Bluetooth. BlueZ's RFCOMM imple 50310k uses online measurements rather than analyticdlsio
mentation supports a credit-based flow control scheme: gati

lar] ds a five-b ket advertising h RIATO of Bluetooth transfers, the characteristics of transferslated by
regularly sends afive- yte pact eta v_ertlsmg owmany BlueMonarch closely match those of real Bluetooth trarssfer
frames it can accept before filling up its buffers.

. o - BlueMonarch currently emulates Bluetooth data transfetbé
OBEX is an application-layer protocol for transferring $il@.g., y

3 fil h h busi d | oifo downstream direction only, i.e. connections in which dabavgl
an MP3 file, a photograph, or business car ) over Blueto T from the BlueMonarch host device to the remote devices. This
devices that want to exchange a file must perform these tteps:s

mimics the typical usage pattern in which a mobile Bluetad¢h

vice downloads content from a fixed infrastructure Bluetode-

L Th.e sender must send an SDP request to make sure the relice. Emulating upstream data flows requires small prob&giac
ceiver supports OBEX transfers.

to elicit large response packets; ideally, this would resj@lue-

2. The receiver answers with an OBEX service record. This Monarch to accurately control response sizes. Although ave ¢

record contains information used to establish an RFCOMM SUggest ways to generate large upstream packets (e.g.afty cr
connection. ing SDP queries that produce large responses), we have pl-im

mented upstream capability in our current version of Bluabfch
3. Once the RFCOMM communication is set up, the sender and we believe that doing so poses a significant challendatiae
segments the file into OBEX packets, sending them one at versions of BlueMonarch.
a time. The receiver reassembles the incoming OBEX pack-  Two Bluetooth devices must be initially paired with eachesth
ets back into afile. to perform an OBEX transfer (see Section 3.2). However, Blue
Monarch uses SDP to emulate transfers and thus the probing de
OBEX packets are fragmented into RFCOMM frames, which in vice need not be paired with the receiver to perform its etedla
turn are fragmented into L2CAP packets. RFCOMM’s MTU typ- transfer. Except for pairing, all other stages of an OBEXdBboth
cially differs from the L2CAP layer's MTU for RFCOMM. In our transfer, such as inquiry, paging, and data exchange, asemirin
experiments, we discovered that many devices set their RRCO a BlueMonarch transfer.
MTU to 1024 and their RFCOMM L2CAP MTU to 1013 or lower. For BlueMonarch to accurately perform data transfers, ra¢ve
This MTU mismatch led to fragmentation, where large RFCOMM assumptions must hold. For example, we assume that aybitrar

This section presents BlueMonarch's design. We first review
how BlueMonarch emulates Bluetooth transfers at the L2Géer
We then discuss the interface that BlueMonarch provideadibi{
tate simple prototyping of Bluetooth applications. Figale de-
scribe the types of probes that BlueMonarch uses, the L2GAP p
tocol options that it can emulate, and factors affectingésuracy.
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Figure 2: The BlueMonarch packet exchange. In a normal Bluetooth trafer, small control packets and large data packets flow in one
direction, and small control packets flow in the other (shovimpart (a)). BlueMonarch emulates this transfer by using rffarmed SDP
packets of different sizes that elicit small SDP responselgs (shown in part (b)). In a normal transfer, the sender @the receiver are
on different devices (shown in part (c)); however, BlueMarth places them on the same device and interposes between {shown in
part (d)). The numbers in parentheses show packet lengthbyies. For simplicity, we do not show baseband layer ackremgiments.

Bluetooth devices respond to service discovery requestsitaat

an accurate emulation of round-trip (rather than one-wagket

latencies and packet loss is sufficient for an accurate dionla
of Bluetooth transfers. We discuss the factors that affdaeB
Monarch’s accuracy later in this section.

4.2 BlueMonarch Interface

BlueMonarch does not require applications to be modified-in o
der to be evaluated. It requires only the ability to instatetithe
application sender and receiver on the same device. Thus; Bl
Monarch exposes an interface that supports all Bluetodthork-
ing and systems calls. Additionally, it does not modify tleensin-
tics of these calls; applications need not be aware that\Bbumarch
is emulating their flows.

4.3 BlueMonarch Probes

BlueMonarch uses a specially crafted “malformed” SDP packe
to emulate a Bluetooth transfer. These SDP packets aressddre
to a specific receiver and ask for information about its sewi
The SDP transaction ID monotonically increases with eadketa
sent. BlueMonarch uses this ID to match outgoing probes with
incoming replies. It sets the SDP probe’s request type t@60x
which corresponds to an “SDP Search services and attritiges
quest. Normally, this request’s payload should contaimiijgsons
of the services under inquiry. Instead, BlueMonarch irssattll
data in the packet's payload and carefully choses the pdydize
so that the SDP probe’s size matches the BlueMonarch sender’
packet size.

Upon receiving a malformed SDP packet from BlueMonarch, a

remote device responds with an SDP error packet whose size is

seven bytes, matching the size of acknowledgments recaivaal
OBEX transfer. Figure 3 illustrates the format of the sebgte
SDP error packet.

4.4 Bluetooth Devicesthat Respond to
BlueM onarch Probes
To be accurate, BlueMonarch requires the remote host tonesp
to Bluetooth inquiries and to every SDP probe it receives.aln
previous experiment, we found that many devices in publazsp

Error Code
(2 bytes)

PDU type
(1 byte)

Transaction ID
(2 bytes)

Length
(2 bytes)

Figure 3: The format of the SDP error packet sent by a remote
device to a BlueMonarch probe. The first byte is set to Ox01 —
“SDP Error code”. The last two bytes are set to 0x003 — “Invali
request syntax”.

were discoverable (i.e., responsive to Bluetooth ingsjiig3]. The
exact percentage of such devices is extremely difficult terd@ne
experimentally: a Bluetooth-capable device with its ramlimed

off is by definition undetectable; one would have to rely éast on

a survey of device owners, which to our knowledge has not been
published. In our experience, Motorola is the only large ufiac
turer that sets their cell-phones to be non-discoverablaefgult.

We also conducted a simple experiment to verify what fractio
of discoverable Bluetooth devices answer every SDP probg th
receive. We sent three SDP probes back-to-back to all désabie
Bluetooth devices found in one of our University’s cafedsriThe
first and last SDP probes were regular SDP request packets. Th
middle probe was the BlueMonarch malformed SDP probe packet
To determine how many Bluetooth devices respond to thes®pro
we measured how many devices responded to the first and |&t SD
packets without responding to the middle malformed probee W
could not include devices responding to the initial SDP esfjbbut
not to the last one because we could not distinguish between t
case where the device does not answer BlueMonarch’s mafbrm
probe and the case where the device moves outside our probing
device’s range during the measurement.

Using this methodology, we conducted a short experiment to
measure 34 devices. Based on their MAC addresses, we ihferre
that these devices were made by 16 different manufactu@arky.
BlackBerry devices do not answer SDP probes; instead th&ty fir
require their owner to pair. We therefore decided to filtenthout
in future experiments; whenever BlueMonarch discoversaziBl
Berry device, it does not attempt to form an SDP connection.



45 Factorsthat Affect BlueMonarch’'s
Accuracy

As noted previously, BlueMonarch is based on round-trihga
than one-way) estimates of packet losses. It cannot distshg
between losses occurring on the downstream link, i.e., fioen
sending device to the remote device, and those occurrindgn@n t
upstream link, i.e., from the remote device to the sender.il@Vh
in theory this could cause BlueMonarch to behave diffeyethtin
regular Bluetooth transfers, in practice BlueMonarch isaffected
by loss: Bluetooth stack implementations often do not immaet
retransmissions instead, as Section 3 presented, logsharadled
by the baseband layer in these Bluetooth stack implementati

One potential source of BlueMonarch inaccuracy derivesfro
differences in incoming packet sizes. When data is trareder
all incoming acknowledgment packet sizes are seven byteishw
BlueMonarch can match. However, Bluetooth transfers akso e
change a few small control packets of different sizes (€.g5,

8, 11, and 14 bytes) for connection startup and tear-downe-Bl
Monarch cannot match these sizes. Section 6 shows that @lé sm
difference in packet sizes does not have a significant effe&ue-
Monarch’s accuracy.

As mentioned in Section 3.3.4, a Bluetooth receiver's RFGOM
layer occasionally sends flow-control packets. Becausethack-
ets are never solicited by the sender, a BlueMonarch tramsfses
them. However, our evaluation shows that this factor alsornesy-
ligible effect on BlueMonarch’s accuracy.

Another source of potential inaccuracy results from the Riang-
Monarch and Bluetooth receivers process incoming data. &s w
show in Section 6, the behavior of a regular Bluetooth treamisf
influenced by the application running on the receiver. Fa@mex
ple, some receivers store incoming data only in RAM (e.gRS®
feed or a streaming video application); others store itablgt stor-
age (e.g., a song download application). In our experimems
found that a transfer to a receiver that stores incoming data

“out of the box”. Since application-level Bluetooth comnuaz
tions are ultimately routed through the L2CAP socket laidue-
Monarch can intercept and re-route network flows from anyeBlu
tooth application. In fact, we have already ran multiplelaapions
written in different languages (e.g, C and Python) on top loeB
Monarch without modification.

5.2 Bluetooth Transfer Emulation

BlueMonarch is implemented as a Linux 2.6 kernel module. To
emulate a flow to a remote device, the BlueMonarch kernel heodu
is inserted before the sender and receiver are started irspaee.
This module replaces the BlueZ L2CAP layer with BlueMon&ch
L2CAP, which contains modifications to three L2ZCAP sockétin
face calls:connect() sendmsg()andclose()

5.2.1 Connect

The L2CAPconnect()call creates an L2CAP socket connection
to a remote device. This call takes as parameters the MAGeasldr
and “Port/Service Multiplexer” (PSM) value of the remoteide.
The PSM acts as an endpoint identifier: its value reflectsaimote
service to which the sender is trying to connect. For exaniple
an OBEX transfer, the sender is trying to connect to the defau
RFCOMM server (the layer under OBEX) on a remote device, in
which case the PSM value should, by convention, be three.

BlueMonarch modifies the connect call by changing the PSM to
initiate an L2CAP connection to the remote device’s SDPeserv
whose PSM value is one. Once the connection is establistee; B
Monarch also creates a loopback connection to an L2CAPuercei
on the local device. The implementation maintains a mappaig
tween each L2CAP connection to a remote device and its adedci
L2CAP loopback connection.

5.2.2 Sendmsg
Our two modifications t@sendmsg()nvolve how we handle the

flash card one packet at a time takes 8.2% longer than a transfe local sender’s and receiver’s calls. For senders, Bluekidngueues

to a receiver that buffers incoming data in RAM and store® it t
disk only at the end of the transfer. Because remote devigces a
swer BlueMonarch’s probes immediately, BlueMonarch tienss
closely match the latter. Although these differences dadirectly
affect BlueMonarch’s accuracy in emulating the wirelesgk,lthey
do affect its accuracy in modeling the end-to-end behavi&lwe-
tooth applications.

Finally, BlueMonarch emulates a Bluetooth transfer by semnd
specially formatted SDP requests that elicit small respsfiom a
remote device. Thus, BlueMonarch can accurately emulgié-ap
cations that send out packets and receive small responeeauge
BlueMonarch can control the size of outgoing packets bubhit-
coming responses, it cannot be used for applications tiragpty
“pull” data from client devices.

5. IMPLEMENTATION

This section present the details of BlueMonarch’s impletaen
tion. We also describe BlueMonarch’s limitations that arfisom
Bluetooth protocol features that are not implemented byBioeZ
Linux Bluetooth stack. We then discuss the potential sécaan-
cerns raised by our system and how we addressed them.

5.1 Application Interface to BlueMonarch

We implemented BlueMonarch to facilitate the evaluatioBloke-
tooth applications. Because the interface BlueMonarclosspis
identical to that of the standard Bluetooth stack, appltcat need
no modifications to run over BlueMonarch; they can be evalliat

L2CAP packets in a local buffer instead of forwarding thenor F
each queued packet, BlueMonarch creates a malformed SDP re-
quest of the same size and forwards it to the remote deviceh Ea
SDP request has a unique transaction ID; these IDs matciingo
SDP replies to corresponding requests.

Upon receiving an SDP reply, BlueMonarch dequeues the cor-
responding L2CAP packet and forwards it to the local receive
When the local receiver callsendmsg() BlueMonarch forwards
the L2CAP packets immediately to the local sender. Figutkig-i
trates BlueMonarch'’s sequence of packet exchanges.

5.2.3 Close

When the local sender caltdose() BlueMonarch discards all
locally queued data before notifying the local receiverkibe
closed connection. We have not alter@ddse()behavior for calls
made by the local receiver.

5.3 Unsupported L2CAP Options

BlueMonarch does not support four options described by the
L2CAP Bluetooth specification: (1) packet retransmissi@nflow
control; (3) connection authorization; and (4) connecimeryp-
tion. While fully documented in the Bluetooth Specificatipacket
retransmission and flow control are optional features nqtlém
mented by the BlueZ Linux stack. These options may be useful i
applications where low-level Bluetooth retransmissiond kigh-
level RFCOMM flow control operate in an undesirable way. For
example, when a client device constantly moves in and owdibr
range, it may be preferable for an application to attempansimis-
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Figure4: Sequence of packet exchanges in the BlueMonarch im-
plementation: BlueMonarch consists of a local sender andoeél
receiver. It replaces the Bluetooth L2CAP layer in the keirte
interpose between the sender and receiver. BlueMonarclo aiks
places OBEX packets with similarly sized malformed SDP peeb
to create the illusion that the remote host is the other endpaf
the Bluetooth transfer.

sions less frequently than the 1.6kHz rate used by the badeba
transmission mechanism, thus freeing up the radio to sentiver
clients between retransmission attempts. In future wouk pian
to implement these two options in BlueZ and add support femth
in BlueMonarch. We do not anticipate any problems incorpoga
packet retransmission and flow control in BlueMonarch.
Bluetooth devices use connection authorization and etioryp
for pairing. As part of the pairing protocol, devices exapara
session key used to encrypt all content exchanged over amefu
connection formed between them. Because it requires thgecao
tion of remote devices, BlueMonarch does not implemeninir

5.4 Usage Concernsand Best Practices

As is often the case with using active measurement toolss-Blu
Monarch experiments can raise potential privacy and iiengss
concerns. Bluetooth devices in the wild could perceive Blaprarch’s
traffic as hostile and intrusive. Because many of these dsvic
are power constrained, handling and responding to Bluekébre
probes could cause them to unnecessarily deplete powerd-To a
dress these concerns, we intentionally limited the behafiour
system running BlueMonarch to limit its impact on other desi
We believe the guidelines described below are appropriatetfier
small-scale public deployments of BlueMonarch.

We limited the amount of communication that BlueMonarch im-
poses on any one device. BlueMonarch never transfers mane th
1MB of data to the same device over the course of an experiment
The power consumed during a 1MB transfer is the same as that co
sumed using a wireless Bluetooth headset for just over twoites.

In practice, however, we found that we transferred less B
of data to most devices.

Another cause of concern is the amount of RF interference-Blu
Monarch’s measurements cause to nearby devices. Bluetbaths
its frequency band with other consumer devices, including=WyV
microwave ovens, and cordless phones. To mitigate thiseranc
we restricted the duration of our BlueMonarch experimeatad
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Figure5: Distribution of the number of extra packets received by
a regular Bluetooth transfer relative to a BlueMonarch trasfer.

In almost all transfers, there are between 1 to 4 extra packef
RFCOMM flow control messages sent by the receiver. Because
they are unsolicited by the sender, they do not occur in Blue-
Monarch’s transfers.

more than four hours per day at a single location. We relegate
to future work an investigation of interference effectsnfr@lue-
Monarch experiments.

6. EVALUATION

This section presents two experiments designed to evablage
Monarch’s ability to emulate Bluetooth flows. First, we istigate
network flow-level characteristics to assess BlueMonarglow-
level accuracy. Second, we evaluate BlueMonarch when mgnni
multiple transfers to multiple receivers to assess its ayuin pi-
conet mode.

6.1 Methodology

We evaluated BlueMonarch’s accuracy by comparing its flaws t
actual Bluetooth flows between the same devices. Perforthiag
evaluation on a large-scale is difficult because it requixagrol
over the software running at both end-points of a Bluetoai.fl
We performed our evaluation by instrumenting the Bluetabétk
of two classes of devices: laptops and PDAs. Our laptopsamng S
X505s running the BlueZ Bluetooth stddk the Linux kernel ver-
sion 2.6.23.1. Our PDAs are Nokia N800s running the Linux&er
version 2.6.18. On the laptops, we instrumented the defamulix
OBEX package calle@BEXFtp on the PDAs, we experimented
with two different OBEX packages: the one supplied by Nokid a
another Linux package callesbbexsnf10] that we ported to the
PDAs.

We ran BlueMonarch only on the laptops; we have not yet ported
BlueMonarch to the PDAs. All flows presented in this evalomti
were initiated from one laptop to one or many PDAs. We also
evaluated BlueMonarch using transfers between laptops bat
brevity precludes our presenting these results; all outofapo-
laptop BlueMonarch flows matched their Bluetooth countegpa
perfectly.

Each experiment was split into rounds. In each round, we per-
formed one regular OBEX transfer followed by a BlueMonarch
transfer; we sent 1MB of data in each transfer. We used twerdif
ent setups: “near” and “far”. In the former, we placed thedszn
and receiver near each other on a desk. In the latter, wecpthee
sender and receiver about 10 meters apart, without linggbf,sin
two different rooms in our lab. For each flow, we gathered pack
logs at the HCI layer (i.e., low in the Bluetooth stack); thésgs
captured the packets’ sizes, payloads, and timestampseWated

1BlueZz is the default Bluetooth stack in Linux.
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Figure 6: Distribution of the sizes of received packets in regular
Bluetooth transfers. Over 96% of received packets are sebgies
long, matching the sizes of received packets in BlueMonarch
transfers. The remaining packets are connection setup aedrt
down control packets of between 4 and 14 bytes.

each experiment 100 times and used all the data to plot otri-dis
butions.

6.2 Flow-level Accuracy

Number of Packets. We start by examining the differences be-
tween the number of packets exchanged by a BlueMonarch and
regular Bluetooth flow. The flows always have an identical hum
ber of sent packets: BlueMonarch is designed to send a pabe f
each packet sent by a regular Bluetooth stack. However,utre n
bers of received packets from the remote device (i.e., thetBbth
slave) differ between the two flows. In each round, we measure
the number of additional packets received in a regular Bhtét
transfer relative to a BlueMonarch transfer. Figure 5 preséhe
cumulative distributions of these extra packets for bogrtear and
far setups.

Bluetooth transfers receive one to four additional packets-
most all our rounds. Our examinations revealed that aletipask-
ets were unsolicited RFCOMM control messages that implégaen
the RFCOMM flow-control mechanism. Because they are unso-
licited by the sender, they never appear in BlueMonarchslatad
flows. The absence of unsolicited packets is a fundamentébh
tion of BlueMonarch.

Packet Sizes. We also examine whether L2CAP packets of Blue-
Monarch flows are the same size as their Bluetooth countsrpar
As before, we do not present the sizes of the packets beindpsen
cause they match perfectly between BlueMonarch and Bltietoo
Instead, we present the sizes of the received packets. A#-Bl
Monarch received packets are identical because they aiegéep
BlueMonarch'’s probes; their size is always seven bytes.régu-

lar Bluetooth flows, Figure 6 shows the cumulative distiidnos of
packet sizes for both the near and far setups.

For both setups, 96% of the received packets are seven loytes i
size, identical to the packet sizes of the BlueMonarch flavbhe re-
maining packets are either five-byte flow-control RFCOMMIpac
ets or 4 to 14 byte control packets used for OBEX connectitupse
and teardown.

Flow Dynamics. We compare the dynamics of BlueMonarch to
Bluetooth flows by plotting the number of bytes transferedhsy
flow over its lifetime. Figure 7 (left side) illustrates therdhmics of
two such flows that were run in one of our rounds chosen at mando
the remaining 99 rounds show results consistent with these.

Our results show that Bluetooth’s transfer rate is slowanth
BlueMonarch’s: the BlueMonarch flow finishes a full two sedsn

earlier. We investigated the causes of this difference laynéming

the Nokia OBEX package running on the N800 PDA. One differ-
ence we found was that the PDA performedyachronous write

as soon as new data was received by the OBEX layer. In caontrast
BlueMonarch flows never trigger any write operations by the r
mote device.

Unfortunately, we could not change this behavior because we
did not have access to the source code for Nokia’'s OBEX packag
Instead, we ported a Linux OBEX packagmifexsn[10]) to the
PDA. This package buffers all received packets and perfamnes
singlewrite operation at the end of the Bluetooth transfer.

Figure 7 (right side) compares the BlueMonarch flow to theeBlu
tooth flow running the ported OBEX package. These resultassho
that the flow dynamics of BlueMonarch and Bluetooth are atmos
identical. The BlueMonarch flow still finishes earlier butiyby
120 milliseconds. We believe that this difference is atitéble to
the additional packet processing performed by a full-bl@ime-
tooth receiver; in contrast, much less packet processidgris by
a BlueMonarch receiver.

6.3 Piconet Accuracy

When sending data to multiple receivers, a Bluetooth master
must form a piconet. In a piconet, the master sends data to eac
receiver one packet at a time in a round-robin fashion. Taat@

8BlueMonarch’s accuracy in piconet mode, we performed the fo

lowing experiment. We set up a sending device to transmitra ve
large file to each slave joining its piconet. We set up six PDAs
as slaves to join the piconet one by one, every 90 seconds. We
measure the transfer rate of the initial flow established/een the
master and the first joining slave and we plot how this rategha

over time in Figure 8. The PDAs ran the Linux OBEX package that
produced accurate results in earlier experiments.

Our results show that the transfer rate to the first slave P®A d
creases over time; the rates measured (in Kbps) are 3201880,
152, 124, and 103 for piconets with 1, 2, 3, 4, 5, and 6 slawes, r
spectively. Although the transfer rates change over tifmey aire
very similar between BlueMonarch and Bluetooth flows.

6.4 Summary

Our results demonstrate that BlueMonarch is accurate:nits e
ulated flows behave similarly to Bluetooth flows with respgrct
the number of packets exchanged and packet sizes. We alsd fou
that the flow dynamics are similar, too, but only when the Blue
tooth receiver does not have to perform synchronous wrédes t
slow storage device, such as a flash card. Finally, we fouad th
BlueMonarch is accurate when running in piconet mode.

7. A CONTENT DELIVERY SYSTEM
PROTOTYPE

We used BlueMonarch to implement a prototype of a Bluetooth-
based content delivery system that could have many uses. For
example, vendors and advertisers could use it to deliveroads
coupons for nearby stores to attract potential customeidinés
could use it to inform their passengers about delays oreldhioard-
ing passes and receipts directly to passengers. News ca@span
could deliver RSS feeds of news articles and weather forecas
ing such a system. And instructors could use it to deliverseu
materials and assignment solutions to their students witheed-
ing to post them on password-protected websites.

Our system’s design is very simple. We use a dedicated derver
cated in a busy place to deliver content over Bluetooth toedkrby
receiving devices. Despite its simplicity, remarkabltidiis known
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a piconet scenario. In this experiment, six Nokia N800 dessc
joined the piconet one device at a time every 90 seconds. The
transfer rate to the first joining slave decreases as each sib
quent slave device joins the piconet. BlueMonarch and Bloeth
transfer rates match very closely.

about how such a system would behave in practice. The difficul
of evaluating Bluetooth systems in the wild has left manyontant
questions unanswered:

m the Nokia OBEX package implementation: additiahreceived

Figure9: The Bluetooth content delivery server: We used a Sony
Vaio X505 laptop equipped with four Bluetooth radios to serv
content to all passing Bluetooth devices. One Bluetooth iad
was responsible for discovering new devices, while the rema
ing three used BlueMonarch to serve content to all discowtre
devices.

1. How many people can receive data from such a system? Canijs a deliberate design choice to reduce the likelihood dfding

a stationary server reach more people than a mobile one?

. How much data can a Bluetooth content delivery system send
opportunistically to nearby devices, such as cell-phoRBgs,
and laptops? Could this system deliver large-sized dath, su
as songs?

. How important is the location of servers to the delivery of
large amounts of data to many people?

BlueMonarch shed light on these questions quickly and vitith |
tle effort, proving the benefits of using BlueMonarch to ptgpe
Bluetooth systems in the wild. We now describe our experisien
methodology and present a set of preliminary answers tore p
ceding questions. We leave a long-term evaluation of a Batht
content delivery system as future work.

7.1 Methodology

We implemented a multi-threaded Bluetooth server in Python
and reserved one thread to discover nearby Bluetooth devier
system issues Bluetooth inquiries periodically, perforgnan in-
quiry scan for 10 seconds with an interval of 20 to 30 secords b
tween scans. Making the inquiry period random rather thaficst

inquiries from multiple inquiring devices. When a devicedis-
covered, our application forks a new thread that runs Blugdvich

to it. We configured BlueMonarch to emulate sending 1MB oédat
to each discovered device. We did not experiment with difier
settings for the inquiry scan duration and periodicity. Vatues
used in our experiments were selected to be similar to the one
used by previous experiments with Bluetooth [11] and to moeet
energy constraints.

Our application uses a Sony X505 laptop running the Bluez
Bluetooth stack in Linux kernel 2.6.23.1. Our laptop is ¢qpeid
with four Class 1 (i.e., with a range of 100 meters) Bluetaattios.

We reserve one of the radios to the thread running Bluetoisth d
covery. We emulate BlueMonarch transfers on the remairhirggt
radios, allocating them in a round-robin manner. Figure @xsh
our Bluetooth content delivery server.

We deployed our Bluetooth content delivery server in twéedif
ent locations: inside of a mall (Eaton Centre in downtowrnofto)
and in a subway system (the Toronto Subway System). We col-
lected two traces at each location: a stationary one and danob
one. In the mall, we gathered the stationary trace by placing
server in the center of the mall’s food court. We collectesltio-
bile trace by carrying the server and walking casually withen-



Traces Collected in the Mall

Trace Collected in the Subway

Stationary Server

Mobile Server

Stationary Server

Mobile Server

Start Time 07/11/2008 15:06 EST 07/09/2008 15:20 EST 07/30/2008 16:34 EST 07/28/2008 16:08 EST
End Time 07/11/2008 16:32 EST 07/09/2008 16:44 EST 07/30/2008 18:10 EST 07/28/2008 17:44 EST
Duration 1 hour, 22 minutes 1 hour, 22 minutes 1 hour, 36 minutes 1 hour, 36 minutes

# of Devices Discovered

68

81

490

137

# of Successful Connections

58

71

184

51

# of Full Transfers (IMB)

30

27

5

9

Total Data Sent

37MB

40MB

29MB

14MB

Average Data Sent per Device

526KB

506KB

61KB

107KB

Average Connection Duration

65.28 seconds

40.85 seconds

27.23 seconds

39.57 seconds

Table 1: Summary statistics for the four traces: We prototyped ous®m in two locations, inside Eaton Centre (a mall in downtow

Toronto) and in the Toronto subway system. We created a ‘istary” scenario by placing the server in the center of the s food
court and in a busy subway station, and a “mobile” scenario bgrrying the server around the mall and riding the subway.

tering any stores. On the subway, we gathered the statidraoy
by placing the server in a busy corridor near the subway quiauf
at Union Station, the largest commuter hub in Toronto’s down
core. We collected the mobile trace by riding a crowded sybwa
car but remaining still inside the car. Each trace spannedte®0
minutes and was collected at roughly the same time of dayoiout
different weekdays. Table 1 shows high-level statisticalbbur
four traces.

7.2 Results

We use the devices’ MAC addresses as a rough approximation

of the number of people who receive data from our system. As Ta
ble 1 shows, our server sent data to 58 people inside the rhathw
stationary, and 71 people when mobile. However, fewer geapl
ceived the entire 1MB of data: 30 people (51%) when stationar
and 27 people (38%) when mobile.

Our findings are even more interesting when riding the subway

Our server discovered 490 people when placed on a subway plat

form. However, we sent data to only 184 people (38%). This low
rate of success is most likely due to the environment; wharba s
way train arrives in the station, many people get off and kjvic
exit the station. In such a crowded environment, our sergafdc
discover a large client population but had little opportynd send
data to many of them.

Table 1 shows that the location and the stationarity of tineese
are very important to the success of the system. Our systam se
more data when placed in a mall (37MB stationary and 40MB mo-
bile) than when placed in the subway (29MB stationary and B4M
mobile). While being stationary or mobile made little difece
inside the mall, placing our server in the subway statiohert
than inside a subway car drastically increased the numhezayle
reached and the amount of data delivered.

Figure 10 provides a breakdown of Bluetooth devices diseal/e
in each trace based on their manufacturer. To plot this gnagh
used an online site that maps MAC addresses to device manufac
ers [9] and excluded those devices whose manufacturersnegre
found by this online site. While Sony Ericsson and Nokia thge
account for about two-thirds of all devices found, our dipapu-
lation is very heterogeneous: we found between 9 and 15 rmenuf
turers in each trace. As described in Section 4.4, our Bluedvith
implementation filters out BlackBerry devices because thguire
pairing before answering our SDP probes.

We also found different SDP MTU settings for the devices we
discovered. Figure 11 presents the distribution of the MTdusd
in each of the four traces. An MTU of 672 bytes was the most
popular setting used by more than 80% of all discovered dsvic
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Figure 10: Breakdown of devices by their manufacturer: There
are 12 manufacturers in the Mall Stationary trace, 9 in Mall kgt
bile, 15 in Subway Stationary, and 10 in Subway Mobile. Sony
Ericsson and Nokia together account for about two-thirds af
devices discovered.

The second most popular MTU setting was much smaller, orfly 25
bytes. These results suggest that a content delivery systeshbe
able to handle a diverse client population with very hetenepus
hardware and software characteristics.

To examine in-depth how much data our system delivered, Fig-
ure 12 plots the cumulative distribution of the amount ofbdsent
in each trace. We can see that our two environments prodwargd v
different results. Our system could send at least 100KB & 66
the devices discovered in the mall when either stationamnor
bile. However, it could send the same amount of data to onf 15
of devices discovered in the subway. This suggests thatet®ith
content delivery system intended to deliver tens of KByteg.( a
RSS feed delivery systéincould be successful when placed in a
mall but not in the subway.

We also examined the data-rates of the Bluetooth connection
in all four traces. We divided each flow into one second irgksy
computed the data-rate for each interval, and averaged thes-
bers to measure the average flow data-rate. Figure 13 psethent
results. On average, the data-rates inside the mall were than
a factor of two higher than those in the subway. These findings
suggest that the subway was a much worse delivery medium for
Bluetooth than the mall. Unlike the mall, it is crowded andght
space. We further hypothesize that our server did not haeeoi
sight to most of the clients discovered in the subway, urilikine
mall.

2100KB of data is sufficient to send about 17 RSS feed up-
dates [22].
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Figure11: Breakdown of devices by their SDP MTU: While more  Figure 13: The average data-rate of the Bluetooth flows in each

than 80% of devices have an MTU of 672 bytes, 2 to 18% of de- of the four traces: To measure the average data-rate of eadwfl

vices have a much smaller MTU of only 256 bytes. we divide the flow in one second intervals, we compute the data
rate for each interval, and we average these numbers.
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g 80 4?%_)'4‘" 8.1 Measurement Techniques

S 60 - BlueMonarch’s measurement techniques are inspired byethos

Q -

8 0 Subway Mobile n’—/f\ used in Monarch, a tool for emulating TCP transfers to Irgern

\3 Mall MObie_\;‘Ff 1MB\°f data hosts without the need for their cooperation [14]. l\/lonarglasu

S 20 = large TCP probes, such as TCP ACK packets, that are deldbgrat
0 _Mall Stationary ‘ enlarged by appending a dummy payload. These probes oitén el

TCP RST responses. By sending large packets to a remote host
Data Deli d (KB that are answered with short TCP RST packets, Monarch getyira
ata Delivered (KB) emulates a TCP flow that transfers data to a remote host.

Figure 12: The amount of data delivered by our content delivery ~ Other Internet measurement tools use existing protocalsam-
system prototype: Cumulative distribution function of theum- ticipated ways to perform measurements that were preyidosl

ber of KBytes sent to the discovered devices for each of the fo ~ tractable. Sting [32] manipulates the TCP protocol to mesasu
BlueMonarch traces. packet loss. T-BIT [27, 25] exploits the TCP protocol to ewar

terize Web servers’ TCP behavior. King [13] uses DNS quenes
measure latencies between two arbitrary DNS servers. 8P8ab
7.3 Summary sends packet pairs of TCP SYN packets to measure bottlemack b

Our BlueMonarch-based evaluation shed light onthe pedioce ~ Width to uncooperative Internet hosts. Like BlueMonardigse
of a content delivery system for Bluetooth. We found that: tools send carefully crafted packet probes to remote hostsea-
sure network properties.
1. ABluetooth content delivery server can deliver tens ofagtes ~ Several previous measurement studies gathered tracesdp st
of data to tens to hundreds of people in just over an hour. To Bluetooth devices’ mobility patterns and interactions, [34]. Blue-
a single user, such a system can deliver tens to hundreds ofMonarch could augment this work by providing more in-deptam
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KBytes, making it very difficult to distribute large-sizeeltd, surements of path properties to these devices.
such as songs. . }
o . 8.2 Bluetooth Applications
2. The server's location is hugely important to the need$ief t Bluetooth location-aware applications make use of pasiicues

system. For example, for delivering RSS feeds, the server i, aqant their functionality based on users’ locations.sting ex-
should be placed inside of a mall rather than in a subway sys- gmp|es of Bluetooth location-aware applications deveddpeboth
tem. In contrast, for an event notification system that needs (ocaarch and industry include advertising systems [1, 1.2512]

to deliver very little data, it is more importarlt. to incredke games [15, 30], and dating services [19]. BlueMonarch coelg
number of people reached by our system; in such a case, agege application designers evaluate their applicatiotisa wild.
subway system is a better venue than a mall. Another class of previous work has incorporated Bluetotm:

hanced the accuracy of localization algorithms becauses shiort
range. For example, [24] evaluated a fine-grained Bluetlidl-
are made by many different manufacturers with differengslu  Ztion system and found it to be accurate to within 3 certinse
tooth software settings, such as different MTUs. A content 9570 Of the time. More recently, [4] designed a localizatigstem
delivery system therefore needs to be robust in the face of th‘f’“ uses Bluetooth in addition to other wireless |nter§£ase|ch as
Wi-Fi and 3G. As before, BlueMonarch could help in evalugtin

these Bluetooth-based localization schemes. For exartipse
systems could use BlueMonarch to shed light on the Bluetoeth
work environment for devices participating in localizatio

3. The client population of such a system has very heteroge-
neous hardware and software characteristics. Client égvic

this large degree of heterogeneity.

8. RELATED WORK
The first part of this section describes related work peirigito
the development of measurement techniques similar to these 9. CONCLUSIONS

in BlueMonarch. The second part describes prior work onldgve This paper presents BlueMonarch, a system for evaluatisty la
ing Bluetooth applications. meter applications running over Bluetooth in the wild. Bienarch
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offers a key abstraction: the ability to emulate a Bluetdodinsfer
to any devices that respond to Bluetooth inquiries. Bluedfoh
is highly accurate: our experiments show that its transfestch
regular Bluetooth transfers with respect to the number okets
exchanged, their sizes, transfer rates, and behavior whenating
in a multi-device piconet.

With BlueMonarch, we prototyped a content delivery system f
Bluetooth. With a single laptop equipped with four Bluetooa-
dios, we transmitted tens of megabytes of data to hundreBhief
tooth devices in just over an hour. Our evaluation also slugd |
on a number of previously open issues regarding Bluetoatteod
delivery capabilities and requirements.

As a final note, we hope that BlueMonarch’s future users will
carefully construct their studies in a way that minimizey site-
effects arising from its use. Our safeguards (presentedety S
tion 5.4) worked well for our limited deployment of BlueMawch.
For larger deployments, we recommend consulting orgadnizat
that handle the ethical issues arising from performingaedeex-
periments, such as an academic ethical review board.
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