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Abstract

We describe a content addressable network which is
robust in the face of massive adversarial attacks and
in a highly dynamic environment. Our network is
robust in the sense that at any time, an arbitrarily
large fraction of the peers can reach an arbitrarily
large fraction of the data items. The network can be
created and maintained in a completely distributed
fashion.

1 Introduction

Distributed denial-of-service attacks on the Internet
are highly prevalent, targeting a wide-range of vic-
tims [3]. Peer-to-peer systems are particularly vul-
nerable to such attacks, since peers lack the technical
expertise and resources needed for maintaining a high
level of protection. In addition to being vulnerable to
such attacks, we can expect peer-to-peer systems to
be confronted with a highly dynamic peer turnover
rate [8]. For example, in both Napster and Gnutella,
half of the peers participating in the system will be
replaced by new peers within one hour. Thus, main-
taining fault-tolerance in the face of massive targeted
attacks and in a highly dynamic environment is crit-
ical to the success of a peer-to-peer system.

The contributions of this paper are two-fold.
First, we define the notion of dynamically strong
fault-tolerance. Our definition captures the proper-
ties that a peer-to-peer system must have to be ro-
bust to orchestrated attacks and in a highly dynamic
environment. Second, we present a content address-
able network [9] which is dynamically strong fault-
tolerant.

1.1 Dynamic Fault Tolerance To better address
fault-tolerance in peer-to-peer networks, we define
a new notion of dynamically strong fault-tolerance.
First, we assume an adversarial fail-stop model —
at any time, the adversary has complete visibility
of the entire state of the system and can choose
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to "delete” any peer it wishes. A "deleted” peer
stops functioning immediately, but is not assumed
to be Byzantine. Second, we require our network to
remain “robust” at all times provided that in any
time interval during which the adversary deletes some
number of peers, some larger number of new peers
join the network.

More formally, we say that an adversary is lim-
ited if for some constants v > 0 and § > v, during
any period of time in which the adversary deletes yn
peers from the network, at least én new peers join the
network (where n is the number of peers initially in
the network). Each new peer that is inserted knows
only one other random peer currently in the network.

For such a limited adversary, we seek to maintain
a robust network for indexing up to n data items.
Although the number of indexed data items remains
fixed, the number of peers in the network will fluctu-
ate as nodes are inserted and deleted by the adver-
sary.

We say that a content addressable network
(CAN) is e-robust at some particular time if all but
an ¢ fraction of the peers in the CAN can access all
but an € fraction of the data items.

Finally, we say that a CAN (initially containing
n peers) is e-dynamically strong fault-tolerant (or
simply e-dynamically fault-tolerant) if, with high
probability, the CAN is always e-robust during a
period when a limited adversary deletes a number
of peers polynomial in n.

In section 2, we present an e-dynamically fault-
tolerant CAN for any arbitrary ¢ > 0, and any
constants v and 6 such that v < 1 and § > v + .
Our CAN stores n data items!, and has the following
characteristics:

1. With high probability, at any time, an arbitrarily
large fraction of the nodes can find an arbitrarily
large fraction of the data items.

TFor simplicity, we’ve assumed that the number of items
and the number of initial nodes is equal. However, for any n
nodes and m > n data items, our scheme will work, where the
search time remains O(logn), the number of messages remains
O(log®n), and the storage requirements are O(log®n x m/n)
per node.



2. Search takes time O(logn) and requires

O(log® n) messages in total.

3. Every peer maintains pointers to O(log® n) other
peers.

4. Every peer stores O(logn) data items.
5. Peer insertion takes time O(logn).

The constants in these resource bounds are func-
tions of €, 7 and 6. The technical statement of this
result is presented in Theorem 1.1.

We note that, as we have defined it, an e-
dynamically fault-tolerant CAN is e-robust for only
a polynomial number of peer deletions by the limited
adversary. To address this issue, we imagine that very
infrequently, there is an all-to-all broadcast among
all live peers to reconstruct the CAN(details of how
to do this are in [1]). Even with these infrequent
reconstructions, the amortized cost per insertion will
be small. Our main theorem is provided below.
THEOREM 1.1. For all € > 0 and value P which is
polynomial inn, there exist constants ki (€), k2(€) and
k3(e) and kq(€) such that the following holds with high
probability for the CAN for deletion of up to P peers
by the limited adversary:

e At any time, the CAN is e-robust
e Search takes time no more than ki(€)logn.

o Peer insertion takes time than

ka(e)logn.

no more

e Search requires mo more than k3(e)log® n mes-
sages total.

e Every node stores mo more than ky(€)log®n
pointers to other modes and ks(e)logn data
items.

1.2 Related Work Fiat and Saia [1] present a
content addressable network for which even after
adversarial removal of a linear number of nodes in the
network, an arbitrarily large fraction of the remaining
nodes can access an arbitrarily large fraction of the
original data items. While the Fiat-Saia network is
an important first step towards the goal of a strongly
fault-tolerant CAN, this scheme is inherently static.
Thus, even if many new peers join the network, the
CAN ceases to be e-robust when all the original peers
die.

Weaker forms of static fault-tolerance are known
to exist for other peer-to-peer systems. Experimental
measurements of a connected component of the real
Gnutella network have been studied [8], and it has

Figure 1: The butterfly network of supernodes.

been found to still contain a large connected compo-
nent even with a 1/3 fraction of random peer dele-
tions.

Several content addressable networks are robust
under random node deletions [4, 9, 2]. For example,
Chord correctly routes queries in O(log(n)) expected
time even after each node fails with probability
1/2. However, it is unclear whether it is possible
to extend any of these systems to remain robust
under orchestrated attacks. In addition, many known
network topologies are known to be vulnerable to
adversarial deletions. For example, with a linear
number of node deletions, the hypercube can be
fragmented into components all of which have size

no more than O(n/y/logn) ([5]).

2 A Dynamically Fault-Tolerant Content
Addressable Network

Our scheme is most easily described by imagining a
“virtual CAN”. The specification of this CAN con-
sists of describing the network connections between
virtual nodes, the mapping of data items to virtual
nodes, and some additional auxiliary information. In
Section 2.1, we describe the virtual CAN. In Sec-
tion 2.2, we go on to describe how the virtual CAN
is implemented by the peers.

2.1 The Virtual CAN The virtual CAN, con-
sisting of n virtual nodes, is closely based on the [1]
scheme. We make use of a butterfly network of depth
logn — loglogn, we call the nodes of the butterfly
network supernodes (see Figure 1). Every supern-
ode is associated with a set of virtual nodes. We call
a supernode at the topmost level of the butterfly a
top supernode, one at the bottommost level of the
network a bottom supernode and one at neither the
topmost or bottommost level a middle supernode.
We use a set of hash functions for mapping
virtual nodes to supernodes of the butterfly and for
mapping data items to supernodes of the butterfly.
We assume these hash functions are approximately



random. 2

The virtual network is constructed as follows:

e We choose an error parameter € > 0, and as a
function of € we determine constants C, D, «
and 3. (See [1] for detailed information on how
this is done).

e Every virtual node v is hashed to C' random
top supernodes (we denote by T'(v) the set of C
top supernodes v hashes to), C' random bottom
supernodes (denoted B(v)) and C'logn random
middle supernodes (denoted M (v)) to which the
virtual node will belong.

e All the virtual nodes associated with any given
supernode are connected in a clique. (We do this
only if the set of virtual nodes in the supernode
is of size at least aC'lnn and no more than

BC1nn.)

e Between two sets of virtual nodes associated
with two supernodes connected in the butterfly
network, we have a complete bipartite graph.
(We do this only if both sets of virtual nodes
are of size at least aC'lnn and no more than

BC lnn.)

e We map the n data items to the n/logn bottom
supernodes in the butterfly: each data item, say
d, is hashed to D random bottom supernodes;
we denote by S(d) the set of bottom supernodes
that data item d is mapped to. (Typically, we
would not hash the entire data item but only it’s
title, e.g., “Singing in the Rain”).

e The data item d is then stored in all the compo-
nent virtual nodes of S(d) (if any bottom supern-
ode has more than B lnn data items hashed to
it, it drops out of the network.)

e Finally, we map the meta-data associated with
each of the n virtual nodes in the network to
the n/logn bottom supernodes in the butterfly.
For each virtual node v, information about v is
mapped to D bottom supernodes. We denote
by I(v) the set of bottom supernodes storing
information about virtual node v. (if any bottom
supernode has more than 8B Inn virtual nodes
hashed to it, it drops out of the network.)

e For each virtual node v in the network, we do
the following:
ZWe use the random oracle model ([6]) for these hash

function, it would have sufficed to have a weaker assumption
such as that the hash functions are expansive.

1. We store the id of v on all component
virtual nodes of I(v).

2. A complete bipartite graph is maintained
between the virtual nodes associated with
supernodes I(v) and the virtual nodes in
supernodes T'(v), M (v) and B(v).

2.2 Implementation of Virtual CAN by Peers
Each peer that is currently live will map to exactly
one node in the virtual network and each node in the
virtual network will be associated with at most one
live peer. At all times we will maintain the following
two invariants:

1. If peers pl and p2 map to virtual nodes z and y
and z links to y in the virtual network, then pl
links to p2 in the physical overlay network.

2. If peer p maps to virtual node z, then p stores
the same data items that x stores in the virtual
network.

Recall that each virtual node in the network
participates in C top, C'logn middle and C' bottom
supernodes. When a virtual node » participates in a
supernode s in this way, we say that v is a member
of s. For a supernode s, we define V(s) to be the set
of virtual nodes which are members of s. Further we
define P(s) to be the set of live peers which map to
virtual nodes in V (s).

2.3 Search for a Data Item We will now describe
the protocol for searching for a data item from some
peer p in the network. We will let v be the virtual
node p maps to and let d be the desired data item.

1. Let by,bs,...,bp be the bottom supernodes in
the set S(d).

2. Let t1,12,..
T (v).

., tc be the top supernodes in the set

3. Repeat in parallel for all values of k between 1
and C:

(a) Let £=1.
(b) Repeat until successful or until £ > B:
i. Let s1,82,...8,;, be the supernodes in
the path in the butterfly network from
t to the bottom supernode by.
e Transmit the query to all peers in
the set P(s1)-
e For all values of j from 2 to m do:
— The peers in P(s;_1) transmit the
query to all the peers in P(s;).



e When peers in the bottom supern-
ode are reached, fetch the con-
tent from whatever peer has been
reached.

e The content, if found, is transmit-
ted back along the same path as the
query was transmitted downwards.

ii. Increment £.

2.4 Content and Peer Insertion An algorithm
for inserting new content into the network is pre-
sented in [1]. In this section, we describe the new
algorithm for peer insertion. We assume that the
new peer knows one other random live peer in the
network. We call the new peer p and the random,
known peer p'.

1. p first chooses a random bottom supernode,
which we will call b. p then searches for b in the
manner specified in the previous section. The
search starts from the top supernodes in T'(p')
and ends when we reach the node b(or fail).

2. If b is successfully found, we let W be the set
of all virtual nodes, v , such that meta-data for
v is stored on the peers in P(b). We let W' be
the set of all virtual nodes in W which are not
currently mapped to some live peer.

3. If b can not be found, or if W’ is empty, p
does not map to any virtual node. Instead it
just performs any desired searches for data items
from the top supernodes, T'(p').

4. If there is some virtual node v in W', p takes
over the role of v as follows:

(a) Let S =T(v)UM(v)U B(v). Let F be the

set of all supernodes, s in S such that P(s)

is not empty. Let E =5 — F.

(b) For each supernode s in F:

i. Let R be the set of supernodes that
neighbor s in the butterfly.

ii. p copies the links to all peers in P(r)
for each supernode r in R. These links
can all be copied at once from one of
the peers in P(s). Note that each peer
in P(b) contains a pointer to some peer
in P(s).

iii. p notifies all peers to which it will be
linking to also link to it. For each
supernode r in R, p sends a message
to one peer in P(r) notifying it of p’s
arrival. The peer receiving the message
then relays the message to all peers in
P(r). These peers then all point to p.

iv. If s is a bottom supernode, p copies
all the data items that map to s. It
copies these data items from some peer
in P(s).

(¢) If E is non-empty, we will do one broadcast
to all peers that are reachable from p. We
will first broadcast from the peers in all
top supernodes in T'(p) to the peers in all
reachable bottom supernodes. We will then
broadcast from the peers in these bottom
supernodes back up the butterfly network
to the peers in all reachable top supernodes.
3.

i. p broadcasts the id of v along with the
ids of all the supernodes in E. All
peers that receive this message, which
are in supernodes neighboring some
supernode in F will connect to p.

ii. In addition to forging these links, we
seek to retrieve data items for each
bottom supernode which is in the set
E. Hence, we also broadcast the ids
for these data items. We can retrieve
these data items if they are still stored
on other peers.*

3 Conclusion

In this paper, we have introduced the notion of a dy-
namically strong fault-tolerance and have described
a content addressable network that has this prop-
erty. Future directions include reducing the number
of messages sent for search and node insertion and
reducing the number of pointers stored at each peer.
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A Appendix

In this appendix, we provide proofs for statements
made in the paper.

A.1 Dynamic Fault-Tolerance We will be using
the following two lemmas which follow from results
in [1]. We first define a peer as e-good if it is connected
to all but 1 — € of the bottom supernodes.

LEMMA A.1. Assume at any time, at least kn of the
virtual nodes map to live peers for some k < 1. Then
for any €, we can choose appropriate constants C and
D for the virtual network such that at all times, all
but an € fraction of the top supernodes are connected
to all but an € fraction of the bottom nodes.

Proof. This lemma follows directly from Theorem 4.1
in [1] by plugging in appropriate values.

LEMMA A.2. Assume at any time, at least kn of the
virtual nodes map to live peers for some k < 1. Then
for any € < 1/2, we can choose appropriate constants
C and D for the virtual network such that at all times,
all e-good nodes are connected in one component with
diameter O(logn).

Proof. By Lemma A.1, we can choose C' and D such

that all e-good peers can reach more than a 1/2
fraction of the bottom supernodes. Then for any two
e-good peers, there must be some bottom supernode
such that both peers are connected to that same
supernode. Hence, any two e-good peers must be
connected. In addition, the path between these two
e-good peers must be of length O(logn) since the path
to any bottom supernode is of length O(logn)

We now give the proof of Theorem 1.1 which is
restated here.
Theorem 1.1: For all € > 0 and value P which is
polynomial in n, there exist constants ki (€), ka(€) and
ks(€) and kq(€) such that the following holds with high
probability for the CAN for deletion of up to P peers
by the limited adversary:

e At any time, the CAN is e-robust
e Search takes time no more than ki (€)logn.

e Peer insertion takes time than

ka(e) logn.

no more

e Search requires no more than ks(e)log®n mes-
sages total.

e Every node stores mo more than kq(e)log®n
pointers to other nodes and ks(e)logn data
items.

Proof. We briefly sketch the argument that our CAN
is dynamically fault-tolerant. The proofs for the
time and space bounds are given in the next two
subsections.

For concreteness, we will prove dynamic fault-
tolerance with the assumption that 2n/10 peers are
added whenever (1/10 — €)n peers are deleted by
the adversary. The argument for the general case
is similar. Consider the state of the system when
exactly 2n/10 virtual nodes map to no live peers. We
will focus on what happens for the time period during
which the adversary kills off (1/10 — €)n more peers.
By assumption, during this time, 2n/10 new peers
join the network. In this proof sketch, we will show
that with high probability, the number of virtual
nodes which are not live at the end of this period
is no more than 2n/10. The general theorem follows
directly.

We know that Lemma A.1 applies during the
time period under consideration since there are al-
ways at least n/2 live virtual nodes. Let R be the
set of virtual nodes that at some point during this
time period are not e-good. By Lemma A.2, peers
in virtual nodes that are not in the set R have been
connected in the large component of e-good nodes
throughout the considered time interval. Thus these



peers have received information broadcasted during
successful peer insertions. However, the peers map-
ping to virtual nodes in R may at some point have not
been connected to all the other e-good nodes and so
may not have have received information broadcasted
by inserted peers. We note that |R| is no more than
en by Lemma A.1l (since even with no insertions in
the network, no more than en virtual nodes would be
not be e-good at any point in the time period under
consideration). Hence we will just assume that those
peers with stale information, i.e. the peers in R, are
dead. To do this, we will assume that the number of
adversarial node deletions is n/10. (We further note
that all peers which are not e-good will actually be
considered dead by all peers which are e-good. This
is true since no bottom supernode reachable from an
e-good node will have a link to a peer which is not
e-good. Hence, such a virtual node will be fair game
for a new peer to map to.)

We claim that during the time interval, at least
n/10 of the inserted peers will map to virtual nodes.
Assume not. Then there is some subset, S, of the
2n/10 peers that were inserted such that |S| =
n/10 and all peers in S did not reach any bottom
supernodes with information on virtual nodes that
had no live peers. Let S’ be the set of peers in S
that both 1) had an initial connection to an e-good
peer and 2) reached the bottom supernode which they
searched for after connecting. We note that with high
probability, |S’| = 6(n) since each new peer connects
to a random peer (of which most are e-good) and
since most bottom supernodes are reachable from an
e-good peer.

Now let B’ be the set of bottom supernodes that
are visited by peers in S’. With high probability
|B'| = 68(n/logn). Finally let V' be the set of virtual
nodes that supernodes in B’ have information on.
For D (the constant defined in the virtual network
section) chosen sufficiently large, |V'| must be greater
than 9n/10 (by expansion properties between the
bottom supernodes and the virtual nodes they have
information on). But by assumption, there must be
some subset V' of virtual node ids which are empty
after the insertions where |V| > n/10. But this is
a contradiction since this we know that the set of
virtual nodes that new peers tried to map to was of
size greater than 9n/10

Hence during the time that n/10 peers were
deleted from the network, at least n/10 virtual nodes
were newly mapped to live peers. This implies that
the number of virtual peers not mapped to live nodes
can only have decreased. Thus the number of virtual
peers not mapped to live nodes will not increase
above 2n/10 after any interval with high probability.

A.1.1 Time That the algorithm for searching for
data items takes O(logn) time and O(log®n) mes-
sages is proven in [1].

The common and fast case for peer insertion is
when all supernodes to which the new peer’s virtual
node belongs already have some peer in them. In this
case, we spend constant time processing each one of
these supernodes so the total time spent is O(logn).

In the degenerate case where there are supern-
odes which have no live nodes in them, a broadcast
to all nodes in the network is required. Insertion time
will still be O(logn) since the connected component
of e-good nodes has diameter O(logn). However we
will need to send O(n) messages for the insertion.
Unfortunately, the adversary can force this degener-
ate case to occur for a small (less than €) fraction of
the node insertions. However if the node deletions are
random instead of adversarial, this case will never oc-
cur in the interval in which some polynomial number
of nodes are deleted.

A.1.2 Space Each node participates in C top
supernodes. The number of links that need to be
stored to play a role in a particular top supernode is
O(logn). This includes links to other nodes in the
supernode and links to the nodes that point to the
given top supernode.

Each node participates in C'logn middle supern-
odes. To play a role in a particular middle supernode
takes O(logn) links to point to all the other nodes in
the supernode and O(logn) links to point to nodes
in all the neighboring supernodes. In addition, each
middle supernode has O(logn) roles associated with
it and each of these roles is stored in D bottom su-
pernodes. Hence each node in the supernode needs
O(log®n) links back to all the nodes in the bottom su-
pernodes which store roles associated with this mid-
dle supernode.

Each node participates in C' bottom supernodes.
To play a role in a bottom supernode requires storing
O(logn) data items. It also requires storing O(logn)
links to other nodes in the supernode along with
nodes in neighboring supernodes. In addition, it
requires storing O(log n) links for each of the O(logn)
supernodes for each of the O(logn) roles that are
stored at the node. Hence the total number of links
required is O(log® n).



