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This paper proposes Monarch, a novel tool that accurately
emulates transport protocol flows from an end host con-
trolled by its user to any other Internet host that responds
to simple TCP, UDP, or ICMP packet probes. Since many
Internet hosts and routers respond to such probes, Monarch
can evaluate transport protocols, such as TCP Reno, TCP
Vegas, and TCP Nice, over a large and diverse set of Inter-
net paths. Current approaches to evaluating these protocols
need control over both end hosts of an Internet path. Conse-
quently, they are limited to a small number of paths between
nodes in testbeds like PlanetLab, RON or NIMI. Monarch’s
ability to evaluate transport protocols with minimal support
from the destination host enables many new measurement
studies. We show the feasibility of using Monarch for three
example studies: (a) understanding transport protocol be-
havior over network paths that are less explored by the re-
search community, such as paths to cable and DSL hosts, (b)
investigating the relative performance of different transport
protocol designs, such as TCP Vegas and TCP Reno, and
(c) testing protocol implementations under a wide range of
experimental conditions.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance
of Systems; C.2.2 [Computer Systems Organization]:
Computer-Communication Networks—Network Protocols;
C.2.5 [Computer Systems Organization]: Computer-
Communication Networks—Local and Wide-Area Networks

General Terms
Experimentation, Measurement, Performance
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1. INTRODUCTION
Despite a large body of work on designing new transport

protocols, such as TCP Vegas [8], TCP Nice [47], TFRC [11],
or PCP [3], evaluating these protocols on the Internet at
large has proved difficult. Current approaches require the
protocols to be deployed at both endpoints of an Internet
path. In practice, this restricts the evaluation of transport
protocols to studies conducted over research testbeds, such
as PlanetLab [35], RON [2], or NIMI [34]. Unfortunately,
these testbeds are limited in their scale and they are not
representative of the many heterogeneous network environ-
ments that constitute the Internet.

In this paper, we propose Monarch, a tool that emulates
transport protocol flows from an end host controlled by its
user to any other Internet host that responds to TCP, UDP,
or ICMP packet probes. Since many Internet hosts and
routers respond to such probes, researchers can use Monarch
to evaluate transport protocols in large-scale experiments
over a diverse set of Internet paths. By requiring control
of just one of the two end hosts of a path, Monarch enables
protocol evaluation on an unprecedented scale, over millions
of Internet paths.

Monarch is based on a key observation about how trans-
port protocols typically work: a sender transfers data to a
receiver at a rate determined by the latency and loss charac-
teristics observed by data and acknowledgment packets ex-
changed between the two endpoints. Monarch uses generic
TCP, UDP, or ICMP probes and responses to emulate this
packet exchange between a local sender and a remote re-
ceiver. We discuss which transport protocols can and cannot
be emulated by Monarch in Section 2.4.

Monarch is accurate because it relies on direct online mea-
surements. For every packet transmission in its emulated
flow, Monarch sends an actual probe packet of the same
size to the receiver and interprets the response packet as
an incoming acknowledgment. Thus, the emulated flows are
subjected to a wide range of conditions affecting real net-
work paths, including congestion, delays, failures, or router
bugs. However, as Monarch controls only one end host,
it can estimate the conditions of the round-trip path but
not the one-way paths. Despite this limitation, our evalu-
ation shows that packet-level traces of flows emulated with
Monarch closely match those of actual network transfers.

Monarch enhances the state of the art in transport pro-
tocol evaluation. Today researchers can use controlled envi-
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Figure 1: The Monarch packet exchange: In a normal TCP flow, large data packets flow in one direction and small

acknowledgment packets in the other (a). Monarch emulates this by using large probe packets that elicit small responses

(b). While in a normal flow, sender and receiver are on different hosts (c), Monarch colocates them on the same host and

interposes between them (d). The numbers in parentheses are packet lengths in bytes.

ronments like network emulators [46,48] or testbeds [2,34,35]
for a systematic analysis of protocol behavior. Monarch
complements these tools by providing live access to a real
network path. This enables experiments with emerging net-
work infrastructures, such as broadband networks, for which
emulators and testbeds are not yet widely available. Fur-
ther, it naturally captures the complex protocol interac-
tions with the different configurations of networks and traffic
workloads that exist in deployed systems.

In addition to capturing the behavior of transport proto-
cols, Monarch has several benefits. Researchers can measure
and gain insight into the properties of network environments
less explored by the community. For example, evaluating a
transport protocol over cable and DSL can provide much
needed insight into the properties of broadband networks.
Further, software developers can test or debug the perfor-
mance and reliability of protocol implementations. These
tests can uncover bugs, performance bottlenecks, or poor
design decisions in the transport protocol.

The rest of the paper is organized as follows. We present
the design of Monarch in Section 2, then we discuss relevant
implementation details in Section 3 and evaluate Monarch’s
accuracy in Section 4. In Section 5, we discuss three
new measurement studies enabled by Monarch. Finally,
we present related work in Section 6 and summarize our
conclusions in Section 7.

2. DESIGN
This section focuses on the design of Monarch. We start

with an overview of how Monarch emulates transport pro-
tocols. Later, we discuss a variety of probing mechanisms
Monarch can use, the number of Internet paths it can mea-
sure, the types of transport protocols it can emulate, and
the factors that affect its accuracy.

2.1 How does Monarch work?
In a typical transport protocol, such as TCP, a sender

on one host sends large data packets to a receiver on an-
other host, and the receiver responds with small acknowl-
edgment packets (Figure 1a). Monarch emulates this packet
exchange by sending large probe packets to the remote host

that elicit small responses (Figure 1b). To emulate a TCP
flow, Monarch creates both a TCP sender and a TCP re-
ceiver on the same local host, but interposes between them
(see Figure 1d). Whenever the sender transmits a packet,
Monarch captures it and instead sends a probe packet of
the same size to the remote host. As soon as it receives a
response from the remote host, Monarch forwards the cap-
tured packet to the receiver. Packets in the reverse direction
from the TCP receiver to the TCP sender are forwarded di-
rectly.

The sizes of Monarch’s probe and response packets match
those of TCP’s data and acknowledgment packets, and they
are transmitted over the same Internet paths. As a result,
the sender observes similar round-trip times, queuing de-
lays, and loss rates for its packet transmissions. Because
Monarch uses online measurements as opposed to analytical
models of the network, the characteristics of flows emulated
by Monarch closely match those of real TCP flows.

In our simplified description above, we made several as-
sumptions. For example, we assumed that probe packets
can be matched uniquely to their response packets, that ar-
bitrary Internet hosts would respond to probe packets, and
that an accurate emulation of round-trip (rather than one-
way) packet latencies and losses is sufficient for an accurate
emulation of transport protocols. Later in this section, we
discuss how widely these assumptions hold in the Internet
at large.

Monarch’s output is a packet trace similar to the output
of tcpdump. Based on this trace, we can infer network path
properties, such as packet round-trip times, and transport
protocol characteristics, such as throughput. We show a
particularly interesting use of this trace in Section 3.3 –
Monarch can analyze its output to detect errors in its own
emulated flows.

2.2 What types of probes can Monarch use?
Monarch can use several types of probe packets to em-

ulate transport flows. It is useful to have multiple probe
types to choose from because not all hosts respond to all
probes. To be accurate, Monarch needs 1) the remote host
to respond to every probe packet it receives, 2) a way to
match responses with their corresponding probes, and 3)



the sizes of the probe and response packets to be similar to
those of the data and acknowledgment packets of a regular
flow. Monarch currently supports the following four types
of probes:

• TCP: Monarch’s probe packet is a variable-sized TCP
acknowledgment (ACK) sent to a closed port on the
remote host. The remote host responds with a small,
fixed size TCP reset (RST) packet. According to the
TCP standard [45], the sequence number of the RST
packet is set to the acknowledgment number of the
probe packet header, which enables Monarch to match
probes with responses.

• UDP: Monarch sends a variable sized UDP packet
to a closed port on the remote host, which responds
with a small, fixed-size ICMP ‘port unreachable’ mes-
sage. The response packet contains the first eight bytes
of the probe packet, including the IPID field of the
probe packet headers [37]. By setting unique IPIDs
in its probe packets, Monarch can match probes with
responses.

• ICMP echo request: Monarch sends a variable-sized
ICMP echo request (‘ping’) packet to the remote host,
which answers with a similarly sized ICMP echo re-
ply packet [37]. The response packet has the same se-
quence number field in its header as the probe packet,
enabling Monarch to match probes with responses.

• ICMP timestamp request: Monarch sends an
ICMP timestamp request message to the remote
host, which answers1 with a small, fixed size ICMP
timestamp reply packet [37]. The response packet has
the same sequence number field in its headers as the
probe packet, enabling Monarch to match probes with
responses.

These probes and responses differ in their suitability for
evaluating transport protocols. For example, TCP and UDP
probes allow the probe packet sizes to be varied, even as
the response packet sizes are held fixed between 40 and 60
bytes. They are well suited to match the sizes of data and
acknowledgment packets for many variants of the popular
TCP protocol, such as Reno, Vegas, and NICE. On the other
hand, the ICMP echo responses are of the same size as their
probes. Consequently, they are better suited for evaluating
transport flows where data flows in both directions.

2.3 How many Internet hosts respond to
Monarch probes?

In theory, Monarch could emulate a transport flow to any
remote host running a TCP/IP implementation, since the
protocol standards require a response to each of the probes
presented above. In practice, however, many hosts are either
offline or behind NATs and firewalls that block or rate-limit
incoming probe packets.

We conducted a simple experiment to estimate the frac-
tion of Internet hosts that can be used as endpoints of a

1Govindan and Paxson [13] observed that some routers use
a ‘slow path’ for generating ICMP timestamp responses,
which introduces additional delays. Hence, these probes
should be used with caution. We use TCP probes when-
ever possible.

90.3 %18.1 %28.4 %Any probe

7.3 %4.1 %7.4 %UDP Packet

89.3 %8.9 %25.0 %ICMP EchoReq

63.0 %4.9 %18.0 %ICMP TsReq

69.6 %13.4 %7.2 %TCP ACK

RouterAcademicBroadband
Type of Host

Table 1: Fraction of Internet hosts responding to

Monarch probes: We used three different categories with

1,000 hosts each: hosts in commercial broadband ISPs,

hosts in academic and research environments, and Internet

routers.

Monarch flow. We sent probes to three types of hosts: end
hosts in commercial broadband ISPs, end hosts in academic
and research networks, and Internet routers. We selected
end hosts in broadband and academic networks from a 2001
trace of peers participating in the Gnutella file-sharing sys-
tem [41]. We used DNS names to select hosts belonging
to major DSL/cable ISPs and university domains in North
America and Europe. For example, we classified a host as
a BellSouth DSL host if its DNS name is of the form adsl-
*.bellsouth.net. We discovered Internet routers by running
traceroute to the end hosts in broadband and academic
networks.

Table 1 presents our results. We probed 1,000 hosts in
each of the three host categories. Overall, more than 18% of
the academic hosts, 28% of the broadband hosts, and over
90% of the routers responded to at least one of the four types
of probes. While this may seem like a small percentage,
there are millions of hosts in the Internet, and it should be
easy to find thousands of suitable hosts for an experiment.

We believe that the primary reason for the large difference
in the response rates between routers and other end hosts is
the low availability of the end hosts. Unlike routers, many
end hosts are often offline2 and disconnected from the In-
ternet. Moreover, our end hosts were selected from a trace
collected five years earlier. In contrast, the router list was
generated from traceroutes conducted only a few weeks be-
fore this experiment.

Using very conservative estimates, our results suggest that
Monarch can evaluate transport protocols to at least 18% of
Internet hosts, and to at least 7% of hosts when restricted
to TCP probes only. This shows that Monarch can evalu-
ate transport protocols over a diverse set of Internet paths,
several orders of magnitude larger than what current re-
search testbeds can provide. For example, we used Monarch
to measure paths to tens of thousands of hosts in over 200
commercial cable and DSL ISPs worldwide. In contrast, re-
search testbeds like PlanetLab have a very small number of
broadband hosts.

2To estimate the effect of host unavailability, we probed the
set of end hosts that responded to our probes for a second
time after a few weeks. Only 67% of the hosts responded
again, suggesting the high impact of end host unavailability.



Protocol Usable?

TCP BIC [49], TCP Nice [47], TCP Vegas [8],

Yes

TCP Westwood [22], Highspeed TCP [10],

Scalable TCP [19], Fast TCP [17], PCP [3]

SACK [24], FACK [23], Window scaling [15]

RAP [39], TFRC [11]

ECN [38], XCP [18] No

Table 2: Supported protocols: Monarch can be used to

evaluate many, but not all, transport protocols.

2.4 What transport protocols can Monarch
emulate?

Monarch emulates transport protocols based on real-time,
online measurements of packet latencies and losses. Hence,
any transport protocol where the receiver feedback is limited
to path latencies and losses can be emulated. As shown
in Table 2, this includes many variants of the widely used
TCP protocol, a number of protocol extensions, and several
streaming protocols.

However, Monarch cannot emulate transport protocols
that require the receiver to relay more complex information
about the network to the sender. For example, Monarch
cannot emulate TCP with explicit congestion notification
(ECN) [38] because it would require the remote host to echo
back the congestion experienced (CE) bit to the Monarch
host. We are not aware of any type of probe that could be
used for this purpose. Similarly, Monarch cannot be used
to evaluate protocols like XCP [18] that require changes to
existing network infrastructure.

Monarch currently emulates transport flows in the down-
stream direction, i.e. connections in which data flows from
the Monarch host to the remote host. This mimics the typ-
ical usage pattern in which an end host downloads content
from an Internet server. Emulating data flows in the up-
stream direction from the remote host to the Monarch host
requires a small probe packet that elicits a large response
packet. We have not yet found a probe packet that has this
property.

2.5 What factors affect Monarch’s accuracy?
Monarch is based on round-trip (rather than one-way)

estimates of packet latencies and losses. When packets are
lost or reordered, Monarch cannot distinguish whether these
events occurred on the downstream path, i.e. from the sender
to the remote host, or on the upstream path, i.e. from the
remote host to the sender. While this could cause Monarch
flows to behave differently than regular TCP flows, our eval-
uation in Section 4 shows that both these events occur rarely
in practice and even when they do occur, they tend to have
a limited effect on Monarch’s accuracy. For example, up-
stream packet loss and reordering affect less than 15% of all
flows. Further, Monarch has a built-in self-diagnosis mech-
anism that can detect most of such inaccuracies using an
offline analysis. Nevertheless, Monarch is not suitable for
environments where upstream loss and reordering events oc-
cur frequently.

Another source of differences between Monarch and TCP
flows is the delayed ACK feature. With delayed ACKs, TCP
data packets received in close succession are acknowledged
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plementation: Monarch consists of a TCP sender, a TCP

receiver, and a proxy. The proxy uses Netfilter to interpose

between the sender and the receiver. It applies network ad-

dress translation to create the illusion that the remote host

is the other endpoint of the flow.

with a single ACK packet. In contrast, in a Monarch flow,
the receiver responds to every probe packet, which typi-
cally doubles the number of packets flowing on the reverse
path. However, because the response packets are small, this
difference is likely to affect only flows experiencing severe
congestion on the upstream path.

When Monarch is used on a path that contains middle-
boxes such as NATs or firewalls, the probes may be answered
by the middleboxes rather than the end host. However, the
middleboxes are often deployed close to the end host, and so
the resulting loss of fidelity tends to be small. For example,
Monarch probes to many commercial cable/DSL hosts are
answered by the modems that are one hop away from the
end host; however, the network paths to them include the
‘last mile’ cable or DSL links.

3. IMPLEMENTATION
In this section, we first present the details of our imple-

mentation of Monarch, which runs as a user-level application
on unmodified Linux 2.4 and 2.6 kernels. We then describe
how our implementation allows us to test complete, unmod-
ified implementations of transport protocols in the Linux
kernel as well as the ns-2 simulator [30]. Finally, we discuss
the self-diagnosis feature of our implementation. In particu-
lar, we show how Monarch can detect potential inaccuracies
in its emulated flows by an offline analysis of its output.

3.1 Emulating a TCP flow
Our Monarch implementation uses three threads: A

sender and a receiver, which perform a simple TCP trans-
fer, as well as a proxy, which is responsible for intercepting
packets and handling probes and responses. The proxy also
records all packets sent or received by Monarch and writes
them to a trace file for further analysis.



To emulate a flow to remoteIP, Monarch uses the Net-
filter [29] framework in the Linux kernel. First, the proxy
sets up a Netfilter rule that captures all packets to and from
that remote address. Next, it creates a raw socket for send-
ing packets to the remote host. Finally, the sender thread
attempts to establish a TCP connection to remoteIP, and
the packet exchange shown in Figure 2 takes place.

As usual, the sender begins by sending a SYN packet to
remoteIP (step 1). The proxy intercepts this packet, stores
it in a local buffer, and sends a similarly-sized probe packet
to the remote host (step 2). The remote host responds with
a packet that is also intercepted by the proxy (step 3). The
proxy then looks up the corresponding packet in its buffer,
modifies its destination IP address, and forwards it to the
receiver (step 4). The receiver responds with a SYN/ACK
packet that is captured by the proxy (step 5). The proxy
then modifies its source IP address and forwards the packet
back to the sender (step 6). Figure 2 also shows the details of
Monarch’s packet address modifications among the sender,
the receiver, and the proxy.

All further packet exchanges are handled in a similar man-
ner. If a packet transmitted to remoteIP is lost, its re-
sponse is never received by the proxy, and the correspond-
ing buffered packet is never forwarded to the local receiver.
Similarly, reordering of packets sent to the remote host re-
sults in the buffered packets being forwarded in a different
order. During long transfers, Monarch reclaims buffer space
by expiring the oldest packets.

The output from Monarch includes a packet trace similar
to the output of tcpdump. In addition, it also logs how state
variables of the protocol vary over time. For example, our
current implementation records TCP state variables, such
as congestion window, the slowstart threshold, and the re-
transmission timeout, via a standard interface of the Linux
kernel. The source code of our Monarch implementation is
available from the Monarch web site [27].

3.2 Testing unmodified transport protocol im-
plementations

Our proxy implementation is completely transparent
to our TCP sender and TCP receiver. This is critical to
Monarch’s ability to test unmodified, complex protocol
implementations in the Linux kernel. Further, since both
the sender and the receiver run locally, we can easily
evaluate the effect of different parameter choices on the
sender and receiver for a given transport protocol. For
example, Monarch can be used to test the sensitivity of
TCP Vegas [8] to the different settings of its α and β

parameters over paths to different hosts in the Internet. We
can also run implementations of different TCP protocols
simultaneously to understand how the protocols compete
with each other. As we show in Section 5.3, this ability
to test protocol implementations under a wide range of
experimental conditions can be used by protocol develop-
ers to discover errors that affect the performance of their
implementations.

Since it is a common practice among researchers to test
new transport protocols using the ns-2 simulator [30], we
added a special interface to Monarch that allows it to con-
nect directly to ns-2. Thus, researchers can conveniently
use a single ns-2 code base for both their controlled simu-

lation and live emulation experiments. More details about
this feature are available at the Monarch web site [27].

3.3 Self-diagnosis
Monarch is capable of diagnosing inaccuracies in its own

emulated flows based on an analysis of its output. As we dis-
cussed earlier, the two primary factors that affect Monarch’s
accuracy are its inability to distinguish loss and reordering of
packets on the upstream and the downstream paths, i.e., the
paths from the receiver to the sender and vice-versa. These
events are difficult to detect on-line, but their presence can
be inferred after the emulation is finished. Monarch runs
a self-diagnosis test after each emulation, which either con-
firms the results or lists any events that may have affected
the accuracy.

3.3.1 Detecting upstream loss and reordering
Monarch’s self-diagnosis uses the IP identifier (IPID) field

in the IP headers of the response packets to distinguish be-
tween upstream and downstream events. Similar to prior
techniques [6,21], Monarch’s self-diagnosis relies on the fact
that many Internet hosts increment the IPID field by a fixed
number (typically one) for every new packet they create.
However, Monarch’s analysis is more involved, as it cannot
send any active probes of its own and so must extract the
information from a given trace.

3.3.2 Impact of upstream loss and reordering
Upstream packet loss and reordering events affect differ-

ent transport protocols in different ways. For example, TCP
Reno is more strongly influenced by packet loss than packet
reordering. Even a single upstream packet loss confused as
a downstream packet loss causes TCP Reno to retransmit
the packet and halve its future sending rate. On the other
hand, only packet reordering on a large magnitude can trig-
ger retransmissions that affect future packet transmissions
in a significant way.

Self-diagnosis tries to estimate the impact of upstream
loss and reordering on Monarch flows. This impact analysis
depends on the specific transport protocol being emulated.
While we focus on the analysis we developed for TCP Reno,
similar analysis techniques can be developed for other pro-
tocols. Our impact analysis for TCP Reno labels a flow as
inaccurate if it sees an upstream packet loss or significant
upstream packet reordering that causes packet retransmis-
sion. It confirms all Monarch traces that see no upstream
packet loss and no significant upstream packet reordering.

We note that confirmation of a Monarch trace by our
analysis does not imply that the trace is accurate for all
usage scenarios. It merely suggests that the trace is likely
to be accurate for many uses. For example, a Monarch trace
that suffers only minor reordering would be confirmed. Such
a trace would be accurate with respect to its throughput,
latency, or packet loss characteristics, but not with respect
to its reordering characteristics.

3.3.3 Output
After detecting upstream events and analyzing their im-

pact, Monarch broadly classifies the result of an emulation
as either confirmed, inaccurate, or indeterminate. We il-
lustrate the decision process in Figure 3, and we discuss it
below:
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Figure 3: Self-diagnosis in Monarch: The result is con-

firmed only if no known sources of inaccuracy are present.

• Indeterminate: Results in this category do not con-
tain enough information for Monarch to distinguish
upstream events (loss or reordering) from downstream
events in all cases. This can happen when downstream
losses and upstream losses occur very close together,
or when the IPIDs in the response packets are unus-
able because the remote host randomizes them, or sets
the field to zero.

• Inaccurate: Monarch warns that its results could be
inaccurate when it detects any upstream packet losses,
or when the observed upstream packet reordering is
significant.

• Confirmed: In all other cases, Monarch has not de-
tected any upstream losses or significant reordering
events. Therefore, it confirms its output.

3.3.4 Rate-limited responses
In addition to the loss and reordering analysis, Monarch

also scans the entire trace for long sequences of packet losses
to identify hosts that rate-limit their responses. For exam-
ple, in our measurements, we observed that some hosts stop
sending responses after a certain number of probes, e.g. af-
ter 200 TCP ACKs, which could be due to a firewall some-
where on the path. This pattern is easy to distinguish from
packet drops due to queue overflows because in the latter
case, packet losses alternate with successful transmissions.
However, it is hard to distinguish losses due to path failures
from end host rate-limiting.

3.4 Usage concerns and best practices
As is the case with using many active measurement tools,

large-scale experiments using Monarch can raise potential
security concerns. Internet hosts and ISPs could perceive
Monarch’s traffic as hostile and intrusive. To address this
concern, Monarch includes a custom message in the payload
of every probe packet. We use the message to explain the
goals of our experiment, and to provide a contact e-mail ad-
dress. We have conducted Monarch measurements to several
thousand end hosts and routers in the Internet in hundreds
of commercial ISPs over a period of seven months without
raising any security alarms.

Another cause of concern is with using Monarch to send
large amounts of traffic to a remote host. This can be of
great inconvenience to remote hosts on broadband networks
that use a per-byte payment model for traffic, where any
unsolicited traffic costs the host’s owner real money. To
mitigate this concern, we only measure hosts in broadband
ISPs that offer flat rate payment plans. In addition, we
never transfer more than a few dozen megabytes of data to
any single Internet host.

Finally, we would like to point out that Monarch flows
compete fairly with ongoing Internet traffic as long as the
emulated transport protocols are TCP-friendly.

444Sender nodes

15,642

4,805

Broadband

2,776

697

Router

12,166Successful measurements

356Receiver nodes

PlanetLab

Table 3: Traces used for our Monarch evaluation: For

each trace, we used geographically dispersed sender nodes

in Seattle (WA), Houston (TX), Cambridge (MA), and

Saarbrücken (Germany).

4. EVALUATION
In this section, we present three experiments that evaluate

Monarch’s ability to emulate transport protocol flows. First,
we evaluate the accuracy of its emulated flows, i.e., we ver-
ify how closely the characteristics of Monarch flows match
those of actual TCP flows. Second, we identify the major
factors and network conditions that contribute to inaccu-
racies in Monarch’s emulations, and show that Monarch’s
self-diagnosis can accurately quantify these factors. Third,
we characterize the prevalence of these factors over the In-
ternet at large.

4.1 Methodology
Evaluating Monarch’s accuracy over the Internet at scale

is difficult. To evaluate Monarch, we need to compare its
emulated flows to real transport flows over the same Inter-
net paths. Unfortunately, generating real transport flows
requires control over both end hosts of an Internet path.
In practice, this would limit our evaluation to Internet
testbeds, such as PlanetLab. We deal with this limitation
using the following three-step evaluation:

1. In Section 4.2, we evaluate Monarch over the Plan-
etLab testbed. We generate both Monarch flows and
real TCP flows, identify potential sources of error, and
study how they affect accuracy.

2. In Section 4.3, we show that Monarch’s offline self-
diagnosis can accurately detect these errors from its
own traces.

3. In Section 4.4, we use this self-diagnosis capability to
estimate the likelihood of error in Monarch measure-
ments over a wide variety of Internet paths.

4.1.1 Data collection
We used Monarch to emulate transport flows over three

types of Internet paths: (a) paths to PlanetLab nodes, (b)
paths to Internet hosts located in commercial broadband
ISPs, and (c) paths to Internet routers. Table 3 shows
statistics about the three datasets we gathered. All mea-
surements involved 500kB data transfers. The TCP senders
were located in four geographically distributed locations,
three (Seattle, Houston and Cambridge) in the U.S. and
one (Saarbrücken) in Germany, while the receivers included
PlanetLab nodes, broadband hosts, and Internet routers.
While gathering the PlanetLab dataset, we controlled both
endpoints of the Internet paths measured, so we generated
both Monarch and normal TCP flows. In the other two
datasets we only controlled one endpoint, so we generated
only Monarch flows.
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Our PlanetLab measurements used 356 PlanetLab nodes
world-wide as receivers. To each PlanetLab node, we con-
ducted five data transfers using Monarch interspersed with
five normal TCP transfers in close succession3, for a total of
ten data transfers from the each of the senders in Seattle,
Houston, Cambridge, and Saarbrücken. We ran tcpdump on
both the sending and the receiving node to record packet
transmissions in either direction.

Our Broadband measurements used 4,805 cable and DSL
end hosts in 11 major commercial broadband providers in
North America and Europe. The list of broadband ISPs we
measured is shown in Table 4. We selected these hosts by
probing hosts measured in a previous study of Napster and
Gnutella [41]. For each host that responded, we used its
DNS name to identify its ISP.

Our Router measurements used 1, 000 Internet routers we
discovered by running traceroute to hosts in the broadband
data set. Only 697 of these routers responded to Monarch’s
probe packets.

These three datasets are available at the Monarch web
site [27].

4.2 Accuracy over PlanetLab
In this section, we compare the behavior of Monarch flows

to TCP flows on Internet paths to PlanetLab nodes. We fo-
cus on two different aspects. First, we investigate whether
the packet-level characteristics of the emulated flows closely
match those of TCP flows. For this, we analyze the sizes and
transmission times of individual packets. Second, we com-
pare their higher-level flow characteristics, such as through-
put and overall loss rate.

4.2.1 Packet-level characteristics
Monarch emulates transport protocol flows at the gran-

ularity of individual packet transmissions. In this section,
we compare the packet-level characteristics of Monarch and
TCP flows to show that they closely match in terms of num-
ber of packets, sizes of packets, packet transmission times,
and evolution of important protocol state variables.

We begin by comparing two flows on a single Internet
path: one emulated with Monarch and one actual TCP flow.
Figure 4(a) shows the times when individual data segments
were transmitted. The graph shows that the transmission

3We also ran the Monarch and TCP flows concurrently, and
compared them. The results were similar to those we ob-
tained when we ran Monarch and TCP alternately in close
succession. Hence, we show only results from the latter.

times of packets in the Monarch flow are almost indistin-
guishable from those in the TCP flow.

Next, we examine how TCP protocol state variables
change during the flows. Figure 4(b) shows a plot of the
congestion window (CWND) and the retransmission time-
out (RTO) for both flows. This information is recorded in
Monarch’s output trace using the TCP INFO socket option.
The CWND plot shows the typical phases of a TCP flow,
such as slowstart and congestion avoidance. Both flows
went through these phases in exactly the same way. The
TCP variables of the Monarch flow closely match those of
the actual TCP flow, suggesting a highly accurate Monarch
emulation.

Next, we compare the properties of aggregate data from
all our PlanetLab traces. We begin by comparing the num-
ber of packets sent and received in the Monarch flows and
their corresponding TCP flows. Figure 5 shows the relative
difference for each direction, using the number of packets
in the TCP flow as a basis. 65% of all flow pairs sent the
same number of packets; the difference is less than 5% of the
packets for 93% of all flow pairs. This is expected because
(a) both Monarch and TCP use packets of the same size,
and (b) both flows transfer the same 500kB of data. More-
over, when we compare only flows with no packet losses, the
difference disappears entirely (not shown). This suggests
that packet losses account for most of the inaccuracies in
the number of packets sent.

Figure 5 shows a substantial difference in the number of
packets received in the upstream direction. This is due to
delayed ACKs: TCP flows acknowledge several downstream
packets with a single upstream packet, while Monarch flows
contain one response packet for every probe. However, ac-
knowledgment packets are small (typically 40 bytes), and we
will show later that this additional traffic has little impact
on high-level flow characteristics, such as throughput.

Finally, we repeat our analysis of packet transmission
times on a larger scale, across all PlanetLab traces. Our
goal is to check whether the rates and times at which
packets are transmitted are similar for TCP and Monarch
flows.

We compare the times taken to transfer 10%, 30%, 50%,
70%, and 90% of all bytes in the 500kB transfer. Fig-
ure 6 shows the difference between times taken to complete
Monarch and TCP traces relative to the TCP traces. The
error stays small for every part of the transfer, suggesting
that packets are sent out at similar rates during the flows’
lifetimes.
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To summarize, we find that Monarch and TCP flows
match with respect to several packet-level characteristics,
including the number and sizes of packets sent, the evolution
of important protocol state variables, and the transmission
times of individual segments.

4.2.2 Flow-level characteristics
In this section, we investigate whether Monarch and TCP

traces are similar with respect to several high-level flow char-
acteristics, such as throughput, round-trip times, queueing
delay, and packet loss.

Throughput: Figure 7 shows the cumulative distribu-
tions of the throughput for Monarch and TCP flows. While
the lines for Monarch and TCP match well, Monarch flows
tend to have a slightly lower throughput than TCP flows.
The figure also shows a second pair of lines, which uses only
flows without packet losses and retransmissions. Interest-
ingly, these lines show almost no difference between Monarch
and TCP. This suggests that the small errors in Monarch’s
throughput estimates might be due to packet losses.

To quantify this error, Figure 8 shows the relative
throughput difference in pairs of consecutive Monarch and
TCP flows, using TCP’s throughput as a base (recall that
we took ten measurements on each path, alternating be-
tween Monarch and real TCP flows). In over 50% of the
flow pairs, the throughput of the Monarch flow differs from
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the throughput of the TCP flow by less than 5%, which is
a good match. However, not all these differences are due to
inaccuracies in Monarch. Figure 8 also shows the through-
put differences between two consecutive TCP flows along
the same paths. The two plots are similar, suggesting that
the dominant cause of these differences is unstationarity in
the network, e.g., fluctuations in the amount of competing
traffic.

Thus, while packet losses can cause Monarch to under-
estimate the throughput in general, their impact is fairly
small, often smaller than the impact of the unstationarity
in network path properties during the course of the flow.

Latency: Next, we focus on the latencies and delays ex-
perienced by packets during Monarch and TCP flows. We
compute three types of packet latencies or round-trip times
(RTT): minimum RTT, maximum RTT, and queueing delay.
To remove outliers, we take the maximum RTT to be the
95th percentile of all packet RTTs, and compute the queue-
ing delay as the difference between maximum and minimum
RTTs. Figures 9 shows the difference in the estimates of
RTTs between Monarch and TCP traces, as a percentage of
TCP estimates. We also show how estimates from successive
measurements of TCP flows differ from each other.

There are two take-away points from Figure 9. First,
Monarch’s estimates of minimum and maximum RTT
closely match the TCP estimates. In fact, Monarch’s errors
are indistinguishable from the variation observed in the
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estimates between successive TCP measurements along the
same paths. This points to the efficiency of our Monarch
implementation; despite the additional packet processing
overhead in our interposing proxy, we add negligible over-
head to the packet latencies. Second, queueing delays
show a much larger variation or unstationarity over time
compared to minimum and maximum RTTs. The reason
for these large relative differences is that the absolute values
are very low. Over 76% of queueing delay estimates are
below 10 milliseconds. Hence, even a small 1-millisecond
variation corresponds to a 10% difference.

Packet loss: Finally, we investigate the loss rates in the
flows. We note that both Monarch and TCP senders re-
transmit packets that they perceive to be lost, which might
be different from the packets that were actually lost. For
example, TCP might mistake massive packet reordering for
a loss and trigger a retransmission. Our interest here is in
the perceived loss rates of these flows, so we use the packet
retransmission rate for loss rate.

Figure 10 shows cumulative distributions of retransmis-
sion rates for both Monarch and TCP flows. 75% of all
Monarch flows and 88% of all TCP flows do not contain any
retransmissions and therefore do not perceive packet loss.
Thus, packet retransmissions do not affect a majority of
both Monarch and TCP flows. Of the flows that do contain
retransmissions, Monarch shows a clearly higher retransmis-
sion rate than TCP. This is expected because Monarch flows
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must retransmit packets for losses in both upstream and
downstream directions, while TCP needs to retransmit only
packets lost on the downstream, due to cumulative acknowl-
edgments.

Summary: Our analysis shows that Monarch can accu-
rately emulate TCP flows with respect to flow-level proper-
ties such as throughput, latency, and queueing delay. How-
ever, Monarch’s inability to distinguish between upstream
and downstream packet loss causes it to over-estimate packet
loss. The impact of this inaccuracy is limited to the small
fraction of flows that see upstream packet loss.

4.3 Reliability of self-diagnosis
In the previous section, we showed that the primary source

of inaccuracy in a Monarch emulation is upstream packet
loss. In this section, our goal is to show that Monarch’s self-
diagnosis feature (Section 3.3) can reliably detect upstream
packet loss, and thus, warn the user of potential inaccura-
cies.

We tested this feature on the Monarch flows in our Plan-
etLab trace. For each flow, we compared the tcpdump traces
from the sender and the receiver to determine how many
packets had actually been lost on the downstream and the
upstream. Then we compared the results to the output of
Monarch’s self-diagnosis for that flow; recall that this uses
only the sender-side trace.
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100.0 %2,776100.0 %15,642Traces total

10.6 %2958.6 %1,344Indeterminate

5.9 %1647.2 %1,130Inaccuracte

83.5 %2,31784.2 %13,168Confirmed

RouterBroadbandResult

Table 5: Monarch is accurate over real Internet paths:

In the majority of the flows, self-diagnosis did not detect

any inaccuracies. Note that even when an inaccuracy is

reported, its impact on flow-level metrics such as throughput

may be quite small.

Figure 11 shows the results. Self-diagnosis could not dis-
tinguish between all upstream and downstream losses (see
Section 3.3) for a very small number of flows (less than 2%).
In these cases, Monarch printed a warning. For the majority
of flows for which self-diagnosis could infer the loss rates, the
measured and the inferred loss rates match extremely well
in both upstream and downstream directions. As expected,
the total loss rate plots are identical.

We conclude that Monarch’s self-diagnosis can reliably
detect the major source of inaccuracy in an emulated flow.

4.4 Accuracy over the Internet at large
In the previous two sections, we showed that upstream

loss is the most important source of inaccuracies in Monarch
emulations, and that Monarch’s self-diagnosis can reliably
detect the presence of upstream loss. Our goal in this section
is to show that upstream losses are rare even when Monarch
is used over real Internet paths.

We ran Monarch’s self-diagnosis over our two Internet
traces; the first trace consists of 15, 642 flows to 4, 805 broad-
band hosts, and the second trace contains 2, 776 flows to 697
Internet routers. Table 5 summarizes our results. About
10% of the traces could not be analyzed by Monarch. In the
broadband dataset, 7.1% of the traces did not contain usable
IPIDs (8.3% in the router dataset), and 1.5% (2.3%) con-
tained a loss that could not be classified as either upstream
or downstream. In either of these cases, self-diagnosis was
aborted immediately.

Overall, 84.2% of the broadband traces and 83.5% of the
router traces were confirmed by self-diagnosis because nei-
ther upstream losses nor significant reordering errors were

detected. This includes the 15.8% (24.9%) of the traces that
contained only minor reordering errors that would not have
changed the number of duplicate ACKs, and therefore would
not have affected any packet transmissions. Only 7.2% of the
broadband traces were reported as inaccurate; for the router
traces, the fraction was only 5.9%.

We conclude that a majority of our flows to Internet hosts
did not suffer from upstream packet loss or significant re-
ordering, the two primary sources of inaccuracy in Monarch.
This suggests that Monarch can be used to accurately em-
ulate TCP flows to a large number of Internet hosts. More-
over, our results show that the IPID-based self-diagnosis is
applicable in most cases.

4.5 Summary
In this section, we showed that Monarch is accurate: its

emulated TCP flows behave similarly to real TCP flows with
respect to both packet-level and flow-level metrics. We also
showed that the most important source of error in Monarch’s
flows is upstream packet loss, and that this can be reliably
detected by Monarch’s built-in self-diagnosis. Further, our
examination of large sets of Monarch flows to various Inter-
net hosts, including hundreds of routers and thousands of
broadband hosts, revealed that less than 10% of these flows
suffer from upstream packet loss. From this, we conclude
that Monarch can accurately emulate TCP flows to a large
number of Internet hosts.

5. APPLICATIONS
Monarch’s ability to evaluate transport protocol designs

over large portions of the Internet enables new measurement
studies and applications. We used Monarch to conduct three
different types of measurement experiments. In this section,
we describe these experiments and present some preliminary
results from them to illustrate their potential benefits.

5.1 Evaluating different transport protocols
New transport protocol designs [3, 10, 47, 49] continue to

be proposed as the Internet and its workloads change over
time. However, even extensive simulation-based evaluations
face skepticism whether their results would translate to the
real world. The resulting uncertainty around how well these
protocols would compete with existing deployed protocols
hinders their actual deployment. With Monarch, researchers
can evaluate their new protocol designs over actual Internet
paths.

We used Monarch to compare three different TCP conges-
tion control algorithms implemented 4 in the Linux 2.6.16.11
kernel: NewReno [12], BIC [49], and Vegas [8]. In our
experiment, we emulated 500kB data transfers from a lo-
cal machine to several hosts in broadband (cable and DSL)
ISPs, using each of the three congestion control algorithms
in turn.5 We examined the traces generated by Monarch for
differences in protocol behavior.

Figure 12 shows the difference between the algorithms
over a single, but typical path. The graphs show how the
congestion window (CWND) and the round-trip time (RTT)

4Note that the Linux implementation of TCP protocols may
differ significantly from their reference implementation or
their standard specification.
5In Linux 2.6 kernels, it is possible to switch between differ-
ent TCP congestion control algorithms at runtime.
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Figure 12: Comparing the performance of different TCP protocols over an Internet path between a host in Germany

and a host in the BTOpenWorld DSL network: variation of packet round-trip times (RTT) and the congestion window

(CWND) over the duration of a flow using (a) NewReno, (b) BIC, and (c) Vegas. The steep drops in RTT and CWND

values are due to packet losses. Compared to Reno, BIC shows higher RTTs and losses, while Vegas shows lower RTTs and

losses.

evolve over the duration of the transfer. All flows begin in
the slow-start phase, where the CWND increases rapidly un-
til the flow loses a packet and enters the congestion avoid-
ance phase. The TCP NewReno graph shows that the RTT
increases from 44ms at the beginning to well over 300ms be-
fore it loses a packet. This suggests the presence of a long
router queue at the congested link on this broadband Inter-
net path. TCP BIC, which has been adopted as the default
TCP protocol by Linux since kernel version 2.6.7, shows a
similar pattern but ramps up the congestion window much
faster after each loss, which results in even higher queueing
delays and packet losses. In contrast to NewReno and BIC,
Vegas enters a stable state with a round-trip time of about
100ms without suffering a single loss.

Our experiment shows that TCP BIC, the default conges-
tion control algorithm in Linux, exhibits the worst perfor-
mance both in terms of packet delay and packet loss. This
is not particularly surprising because BIC is designed for
Internet paths that have a high bandwidth-delay product.
In contrast, our measurement path includes a broadband
link with relatively low bandwidth. However, since many
hosts today use broadband Internet connections, it might
be important to improve BIC’s performance over broadband
networks.

Our Monarch results, while preliminary, show the impor-
tance of understanding the behavior of new protocols over a
variety of real network paths before deploying them widely.

5.2 Inferring network path properties
Monarch can be used to infer properties of network paths

that have received relatively little attention by the research
community, such as paths to end hosts in commercial cable
and DSL networks. For this study, we analyzed the Broad-
band trace described in Section 4.1. This trace contains
Monarch flows to 4,805 broadband hosts in 11 major ca-
ble and DSL networks in North America and Europe. Our
analysis inferred several path properties, such as through-
put, round-trip times, queueing delays, loss, and reordering.
While a detailed characterization of these properties is be-
yond the scope of this paper, we present some initial results
about the overall throughput of these flows and discuss their
potential implications.

Figure 13 shows the distribution of throughput for flows
to different cable and DSL ISPs. The throughput plots for
the DSL ISPs jump sharply at 256Kbps, 384Kbps, 512Kbps
and 1Mbps. These data rates roughly correspond to the link
speeds advertised by these ISPs (see Table 4), which indi-
cates that our transfers were able to saturate the access link,
which is likely to be the bottleneck. However, the through-
put for cable flows do not exhibit similar jumps, even though
cable ISPs advertise discrete link speeds as well. This sug-
gests that DSL flows and cable flows may be limited by
different factors; access link capacities seem to affect DSL
flows to a greater extent than cable flows.

Overall, our experiment demonstrates how Monarch can
be used to infer properties of network paths that have proven
difficult to measure in the past. Previous studies of broad-
band hosts [20] required control over both endpoints, and
consequently were limited to a small number of broadband
paths.

5.3 Testing complex protocol implementations
Modern transport protocols (e.g. TCP NewReno with fast

retransmit and recovery) are so complex that it is often dif-
ficult to implement them correctly. While program analysis
techniques [28] could help debug functionally incorrect im-
plementations, it is important to test the performance of
these protocols in the real world to find performance prob-
lems. Monarch is particularly useful for testing protocols
because it can run complete and unmodified protocol imple-
mentations.

We used Monarch to emulate TCP flows to several differ-
ent types of hosts, including broadband hosts and academic
hosts. In this process, we discovered bugs in the Linux TCP
stack that tend to manifest themselves frequently over cer-
tain types of Internet paths. For example, we found that
the Linux 2.6.11 implementation of Fast Recovery [12] can
cause the congestion window to collapse almost entirely, in-
stead of merely halving it. This problem can severely reduce
throughput, and it occurs repeatedly over paths to DSL or
cable hosts.

The purpose of Fast Recovery is to allow the TCP sender
to continue transmitting while it waits for a retransmitted
segment to be acknowledged. Linux uses a variant known
as rate halving [43], which transmits one new segment for
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Figure 13: Broadband flows: Cumulative distributions of TCP flow throughput achieved over major (a) DSL and (b) cable

access networks. Notice how DSL throughput raises sharply at discrete bandwidth levels while cable throughput does not.
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every other ACK received. Thus, one new packet is sent
for every two packets that leave the network. Under normal
conditions, this has the effect of gradually decreasing the
number of packets in flight by half. Linux 2.6.11 implements
rate halving by estimating the number of packets in flight,
and capping the congestion window at that number.

However, we found that this approach fails when the con-
gestion window approaches the send buffer size. Figure 14
shows an example of a flow that saw its first loss after 0.6
seconds, when the congestion window was 36 packets wide.
Initially, Linux was able to send 8 additional segments for
every other ACK as expected. But, once it reached the
default send buffer size of 64kB (44 packets), it could not
transmit more new segments. After this point, with no new
segments being transmitted, the number of packets in flight,
and consequently the congestion window, decreased rapidly.
Every incoming ACK reduced the congestion window by one
packet, causing it to fall far below the slowstart threshold
of 18 packets. Thus, after leaving Fast Recovery, Linux fell
back into slowstart for over half a second. Note that a sec-
ond loss at 2.0 seconds was handled correctly because the
congestion window was still fairly small.

Monarch helped us discover this problem because it al-
lowed us to test the complete and unmodified protocol im-
plementation (in this case, the NewReno code in the Linux
kernel) over a wide range of real links with different charac-
teristics.

6. RELATED WORK
Monarch leverages existing protocols in unanticipated

ways to perform measurements that were previously in-
tractable. This approach is similar to several other mea-
surement tools. Sting [44] manipulates the TCP protocol to
measure packet loss. T-BIT [25, 32] exploits the TCP pro-
tocol to characterize Web servers’ TCP behavior. King [14]
uses DNS queries to measure latencies between two ar-
bitrary DNS servers. SProbe [42] sends packet pairs of
TCP SYN packets to measure bottleneck bandwidth to
uncooperative Internet hosts. Like Monarch, these tools
send carefully crafted packet probes to remote Internet
hosts to measure network properties.

There is a large body of literature on evaluating trans-
port protocol designs and implementations. Much of the
previous work relies one of following three approaches to
characterize protocol behavior. The first approach uses syn-
thetic network simulators and emulators, such as ns-2 [30],
NetPath [1], dummynet [40], NIST [9], and ModelNet [46].
There is an impressive amount of research on protocol mod-
eling and characterization in these controlled environments.
Padhye [31] discusses a summary of papers on TCP mod-
eling. Unlike Monarch, previous simulators and emulators
either use analytical models to generate TCP traffic or they
simulate different synthetic network environments.

The second approach of evaluating transport protocols is
based on active measurement. Bolot [7] and Paxson [33] per-
formed some of the initial studies on network packet dynam-
ics along a fix set of Internet paths. Padhye and Floyd [32]
characterized the TCP behavior of a large set of popular
Web servers. Medina et al. [25] investigated the behavior of
TCP implementations and extensions. In a different project,
Medina et al. [26] characterized the effect of network middle-
boxes on transport protocols. More recently, several studies
have used PlanetLab [36] to examine different aspects of
TCP network traffic.

The third approach of evaluating transport protocols re-
lies on passive measurements. Based on the traces of TCP
flows to a busy Web server, Balakrishnan et al. [5] presented
a detailed analysis of the performance of individual TCP
flows carrying Web traffic. Jaiswal et al. [16] used traffic
traces of a Tier-1 ISP to investigate the evolution of a TCP
connection variables over the lifetime of a TCP connection.
More recently, Arlitt et al. [4] have used Web traces to inves-
tigate the impact of latency on short transfers’ durations.



7. CONCLUSIONS
In this paper, we presented Monarch, a tool that emulates

transport protocol flows over live Internet paths. Monarch
enables transport protocols to be evaluated in realistic en-
vironments, which complement the controlled environments
provided by the state of the art network simulators, emula-
tors or testbeds. Monarch is highly accurate: its emulated
flows closely resemble TCP flows in terms of throughput,
loss rate, queueing delay, and several other characteristics.

Monarch uses generic TCP, UDP, or ICMP probes to em-
ulate transport protocol flows to any remote host that re-
sponds to such probes. By relying on minimal support from
the remote host, Monarch enables protocols to be evaluated
on an unprecedented scale, over millions of Internet paths.

We used Monarch for three novel experiments. First, our
preliminary study on the performance of different conges-
tion control algorithms (TCP Reno, TCP Vegas and TCP
BIC) shows that much remains to be understood about the
behavior of even widely adopted protocols over the Internet
at large. Second, we showed that Monarch measurements
can be used to infer network properties of less-studied In-
ternet paths, such as paths to cable and DSL hosts. Third,
we used Monarch to test complete and unmodified TCP pro-
tocol implementations in the Linux kernel over a variety of
Internet paths, and we discovered nontrivial bugs. Based
on our experience, we believe that Monarch can help the re-
search community conduct large-scale experiments leading
to new insights and findings in the design and evolution of
Internet transport protocols.
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