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Abstract—Row-Sampling is a simple, practical, and strong
form of Rowhammer defense if properly configured. Unfortu-
nately, previous papers either omit describing how to configure
Row-Sampling, or when they do, their formulae suffer from
limitations and unrealistic assumptions. This paper presents a
mathematically rigorous description of how to configure Row-
Sampling to protect an entire system for a given period of time.

I. INTRODUCTION

Row-Sampling-based Rowhammer defenses are one of the
oldest and simplest classes of defense techniques suitable
for a memory controller. On each row activate, the memory
controller flips a biased coin. With a low probability p (p � 1),
the row address is sampled and the row is treated as if it is an
aggressor row. The memory controller performs a mitigative
action such as refreshing the corresponding victim rows. A
sufficiently high sampling rate p thwarts a Rowhammer attack
because it ensures that an aggressor row cannot escape being
sampled with very high probability. Some of the earliest
papers on Rowhammer introduced variants of sampling-based
defenses under the names of “Probabilistic Adjacent Row
Activation” (PARA)” [16] and “Probabilistic Row Activation”
(PRA) [12].

Row-Sampling’s main benefit lies in its simplicity: the
memory controller need not maintain any state. This is in stark
contrast with other forms of Rowhammer defenses suitable for
memory controllers that need to store, lookup, and maintain
large tables of rows that are tracked [6], [12], [30], [32],
[23], [18], [19], [31], [21], [33], [35], [25], [11], [34], [14],
remapped [15] or swapped [28].

These advantages make Row-Sampling very attractive to
CPU vendors who are considering incorporating it into their
memory controllers. In fact, older versions of Intel CPUs
implemented a form of Row-Sampling to defend against
Rowhammer targeting DDR3 DRAM, called pTRR [10].
Due to the initial impression of DDR4 being “Rowhammer-
free” [20], [5], [17], Intel unfortunately dropped support for
pTRR from their recent server SKUs. However, DDR4 has
now been shown to still be vulnerable [13], [3], [27], [8] and
recent work shows newer DRAM cells requiring fewer mem-
ory accesses until bits start to flip [24], [2], [29]. Given these
trends, we expect a resurgence of interest in Row-Sampling-
based techniques. An important question thus becomes: to
what value should the sampling rate be set to provide an
adequate level of defense? Answering this question must be
done holistically for an entire system throughout its lifetime
(rather than for a single bank or a single refresh window only),
and must make realistic assumptions.

Despite the simplicity of Row-Sampling, previous work
does not thoroughly answer this question. Some previous
works characterize Row-Sampling’s protection using simu-
lations, and do not present enough detail to understand the
formula used to derive the sampling rate [13]. Unfortunately,
simulations are not a scalable way to provide guarantees for
very rare events. For example, it is impractical to attempt to
infer the value of p by observing Rowhammer failures that
occur at a rate of 1e−10 during simulations. Two previous
papers do offer formulae for setting p [12], [25]. Unfortunately,
the formulae are different from each other, make unrealistic
assumptions about the Rowhammer remedy available to the
memory controller, and assume a stronger threat model than
what is realistic.

The absence of a rigorously-analyzed formula for setting
p is dangerous. A mis-configured Row-Sampling implemen-
tation could leave a system vulnerable. Catching such mis-
configurations by testing is difficult. With today’s memory
controllers, the only way to detect that an aggressor row has
escaped sampling (i.e., a Row-Sampling mis-configuration) is
by observing bit flips in DRAM.

This paper provides a mathematical analysis and a formula
that let CPU vendors set p correctly in a Row-Sampling im-
plementation. Our threat model is more realistic than previous
models: the attacker knows the DRAM model, including items
such as the t̊hreshold and the blast radius, as well as the value
of the sampling probability p. Our model takes into account
DRAM’s auto-refresh behavior, but assumes that the attacker
does not know which specific rows are refreshed during an
auto-refresh command. This is important because, without
knowing when a specific victim row is refreshed, the attacker’s
aggressor row must both escape sampling and avoid having its
victim refreshed. Previous models did not take into account
auto-refresh in modeling the behavior of Row-Sampling.

We implemented our formulae in Python using an arbitrary-
precision library. With our code, a CPU vendor can de-
termine the correct sampling rate value for a given level
of protection. We present tables of values of p for DDR5
memory configurations that CPU vendors can use to guar-
antee negligible failure rates. Our code is open-sourced at
https://github.com/microsoft/RHSampling.

II. DRAM MODEL

Most Rowhammer defenses assume a simple and uniform
DRAM model. Upon an activation, each row creates distur-
bance in nearby rows. A victim row’s degree of disturbance
is affected only by its distance from the aggressor row. For
example, an aggressor row R affects its two adjacent victim

1

https://github.com/microsoft/RHSampling


rows R ± 1 to the same degree. R affects R ± 2 to a lesser
degree than R ± 1, R ± 3 to even lesser than R ± 2, and
so on. The rate at which disturbance decreases with distance
is referred to as attenuation factor. Blast radius is a term
that indicates the distance between the aggressor row and its
farthest victim. A DRAM module with a blast radius of 2
means that R disturbs four rows only: R ± 1 and R ± 2. No
row outside of the blast radius is disturbed. Table I presents a
summary of Rowhammer terminology.

Most Rowhammer defenses suitable for incorporation into
a memory controller attempt to identify aggressor rows. Their
goal is to never let an aggressor row receive more row acti-
vations than a fixed threshold, called a Rowhammer threshold
(THRH), within a refresh interval (64ms in DDR4 and 32ms
in DDR5). Once the number of row activations reaches THRH,
a remedy is performed. The remedy is assumed to undo all
disturbance created by the aggressor row.

Row-Sampling schemes configure their sampling rate p to
provide a probabilistic guarantee, such as the likelihood of any
row receiving THRH or more row activations is negligibly low.
It is not very clear what a negligibly low failure probability
should be, although some recent papers suggest 1e−15 per
hour of continuous hammering [13].

Earlier Row-Sampling schemes [16], [12] assumed that the
remedy used by the memory controller is to activate victim
rows. Unfortunately, internal DRAM row topology remains a
closely-guarded secret by DRAM vendors [29]. This leaves
the memory controller unable to identify those victim rows
affected by a specific aggressor row. The two earliest Row-
Sampling schemes incorporate this unrealistic form of remedy
in their names: the last ’A’ in both PARA [16] and PRA [12]
stands for row Activation.

As an alternative, researchers have proposed the addition
of a new DRAM command called Nearby Row Refresh
(NRR) [19], [25]. When it detects an aggressor row, the
memory controller issues NRR to report the aggressor’s row
address to the DRAM device which then allows the device to
refresh the relevant victim rows. The rest of the paper assumes
NRR as the remedy used by the memory controller. We
expect NRR will be incorporated in upcoming DDR5 DRAM
specifications and supported by DRAM vendors (see Errata).

Limitations: In practice, DRAM does not behave like this
simplistic and uniform model suggests. Some rows require
fewer row activations to induce bit flips than others. This
corresponds to a need to have per-row THRH thresholds rather
than a single value constant across all DRAM in the system.
Also, DRAM disturbance is not uniform: some cells are more
likely to be disturbed than others even if their distance to
an aggressor row is the same. Finally, the blast radius varies
depending on the aggressor row; certain rows have a wider
blast radius than others.

Despite these limitations, the DRAM model remains use-
ful because it lets us analyze a Rowhammer defense with
mathematical rigor under a set of assumptions. To account for
the differences in THRH values, DRAM disturbance effects,
or blast radii, a practical Row-Sampling-based Rowhammer
defense can set its global parameters to the most conservative
values as appropriate. For example, the system-wide THRH

Single-sided A Rowhammer attack where one aggressor
row is activated repeatedly with the goal of
inducing bit flips on adjacent (or nearby)
rows in a bank.

attack

Double-sided A Rowhammer attack where two aggressor
rows are located one row apart. The row
between the two aggressors is a victim row.

attack

Rowhammer The maximum number of activations a row
can sustain in a single refresh window until
a Rowhammer mitigation action must be
performed.

threshold

Blast radius The physical distance (i.e., the number of
rows apart) between an aggressor and a victim
row. A blast radius of 1 corresponds to the
case when the aggressor and victim rows are
adjacent. Distant rows correspond to a blast
radius greater than 1.

Attenuation A factor representing the reduction of
disturbance errors as the blast radius
increases. This factor is assumed to directly
correlate with the increase in the number of
activations an aggressor row requires to flip
bits in victim rows located farther away. For
example, an attenuation factor of 10 means
that a victim row requires 10 times more
activates to flip bits in a victim row located
two rows away than an adjacent victim.

factor

Neighbor row New DRAM command that takes as input
the address of an aggressor row. Upon
detecting an aggressor row, the memory
controller issues an NRR to the DRAM. In
turn, the DRAM refreshes all victim rows in
the blast radius.

refresh
(NRR)

Sampling rate Probability of sampling a row activation and
treating the row as if it is an aggressor.p (p � 1)

TABLE I
SUMMARY OF DRAM MODEL AND TERMINOLOGY.

should be set to the minimal value of all rows’ and all cells’
THRH. Similarly, the global blast radius parameter should be
the maximum blast radius of any DRAM row in the system.

III. THREAT MODEL

To analyze Row-Sampling schemes, we assume a worst-
case, but realistic threat model. The attacker knows the DRAM
model and the implementation of the Row-Sampling scheme
including the value of p. The attacker is free to activate
any row in any order but without violating the DRAM bus
timings and correctness. The DRAM is configured to run
at a normal refresh rate: the memory controller issues 8192
refresh commands to a rank every refresh window of 64ms for
DDR4 and 32ms for DDR5. Such assumptions correspond to a
scenario in which an attacker can run arbitrary code on the host
system but cannot modify the hardware, the firmware, or the
BIOS/UEFI settings. Prior work [1] has described instruction
sequences carefully constructed to bypass all CPU caches and
hammer memory at the highest rates allowed by DRAM (i.e.,
at a rate of one row activate every tRC).

The worst-case attack strategy activates the same row
continuously (i.e., a single-sided attack). An attack strategy
that activates another row is sub-optimal for two reasons. First,
activating the other row does not bring the attack on the first
row any closer to success. Second, a successful attack that
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hammers multiple rows remains successful (and even increases
its chances of success) if the attacker hammered only one row.

Prior work assumed a stronger but less realistic threat
model. Prior work [12], [25], [13] assumed a single necessary
(but insufficient) condition for an attack to be successful:
within a refresh window, one row must be activated more
than THRH times without being sampled. This condition is
insufficient because it assumes the absence of background
auto-refresh. A series of back-to-back row activates lasting
longer than THRH is not a successful attack if the victim row
is auto-refreshed in the meantime.

To the best of our knowledge, an attacker does not have
a way to infer or learn when a specific victim row is auto-
refreshed. Thus, the attacker cannot avoid the case when the
“lucky” series of back-to-back unsampled row activations still
fails to flip bits because it overlaps with the auto-refresh of
the victim row. Thus, our threat model is weaker than that
assumed by prior work, yet more realistic.

The threat model affects the whole system throughout
its entire lifetime. Prior work [12], [25], [13] describes the
configuration of a Row-Sampling-based Rowhammer defense
for a single bank and/or within a single refresh window.
However, a more realistic scenario must assume a determined
attacker who could launch a Rowhammer attack on all banks
in parallel and can hammer continuously for long periods of
time. This degree of parallelism and the attack’s lifetime must
be taken into account when configuring the Row-Sampling-
based Rowhammer defense.

IV. LIMITATIONS OF PRIOR WORK

To the best of our knowledge, no prior work has done an in-
depth correct analysis of how to configure an Row-Sampling-
based Rowhammer defense. One prior source of inaccuracy is
the less realistic threat model described in Section III: prior
works fail to take into account the existence of background
auto-refresh. No prior works incorporate in their analysis a de-
gree of parallelism (i.e., an attack affecting all system’s banks
in parallel). Most, but not all [13], provide an analysis based on
discretizing time in intervals corresponding to refresh intervals.
This approach implicitly assumes that attacks can only start
and end within the same interval and fails to consider attacks
spanning multiple intervals. Finally, the analysis and formulae
of prior works suffer from varying degrees of imprecision and
errors as detailed below. Table II summarizes the limitations
of prior work.

A recent prior work performed simulations to characterize
the performance of a Probabilistic Row Adjacency Activation
(PARA) to protect newer DRAM [13]. Unfortunately, the
paper does not contain sufficient detail to understand how
the sampling rate p was set other than “[we set p] such that
the bit error rate (BER) does not exceed 1e−15 per hour of
continuous hammering”. The simulations report the DRAM
bandwidth overhead as a percentage for various Rowhammer
defense schemes including PARA. Initially, we thought this
overhead corresponds to the sampling rate and can be simply
inferred from the graphs. Our intuition stemmed from the
observation that PARA’s overhead scales linearly with p irre-

Unrealistic Lack Long Correct
threat of lasting formula &
model parallelism attack analysis

Revisiting [13] $ $ "1 $

PRA [12] $ $ $ $

Graphene [25] $ $ $ "2

TABLE II
SUMMARY OF PRIOR WORK’S LIMITATIONS. REVISITING [13]
CONSIDERED LONG-LASTING ATTACKS UP TO 1 HOUR ("1).

GRAPHENE [25]’S FORMULA SUFFERS FROM A OFF-BY-ONE ERROR ("2).

spective of the workload. Thus a sampling rate of 1% would
roughly correspond to a DRAM bandwidth overhead of 1%.

Unfortunately, it appears this is not the case. Some of the
outliers shown by the simulations report an overhead higher
than 100% (for example, see the bottom whisker of the point
with an x-axis value of 150 in Figure 10a [13]). This cannot
correspond to a sampling rate value because p cannot be higher
than 1.

One of the original papers [12] on Row-Sampling includes
the derivation of a closed-form formula on the probability of
Rowhammer failure for a given p, THRH, and a term called
“rounds” (abbreviated by k). Rounds refers to the time needed
for an attacker to issue THRH row activations back-to-back,
and does not correspond to a refresh window. The closed form
formula is:

Pfailure = 1− (1− e−p×THRH)k

Unfortunately, this formula underestimates the sampling rate
value. Its derivation rests on the assumption that each of the
rounds are independent and no disturbance carries from one
round to the next (assumption made by Equation 3.11 in [12]).
For example, an attack that issues half its row activations at the
very end of a round, and the other half at the very beginning
has a high chance of escaping sampling. We confirmed with
the authors that their assumption is not realistic.

The Graphene paper [25] also lists a brief analysis and a
recurrence formula for computing the sampling rate of PARA:

P (eN ) = P (eN−1) + p(1− 1

2
p)THRH(1− P (eN−THRH−1))

P (eN ) = 0 when N < THRH

where eN refers to a failure event (i.e., at least THRH
consecutive row activations) in a series of N row activations.

The ending clause of the recurrence is trivial: if the number
of row activations is lower than THRH the probability of a
Rowhammer failure is zero. The recurrence formula itself is
based on a simple, but insightful observation. There are only
two possibilities to encounter a failure event in a series of
N row activations: either the failure event occurred sometime
during the first N − 1 row activations or the failure occurred
right on the N -th activate. This second possibility occurs only
if the last THRH + 1-th row activations follow the pattern:

PATTERN=sampled-unsampled-unsampled-...-unsampled

Two conditions must be met to ensure the failure occurs
right on the N -th activate and not earlier: 1) the first row
activation in the pattern above must be sampled, and 2) no
failures occur before the THRH + 1-th row activation. The
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p sampling rate
THRH Rowhammer threshold
b # of banks in the system
tRC row cycle time (45ns in DDR4/5)
tREFW refresh window (32ms in DDR5; 64ms in DDR4)
ACTTOTAL the maximum # of row activations to a bank throughout

the attack’s lifetime
tRFC REF command duration (used to calculate ACTTOTAL)
P (eN ) prob. of a sequence of THRH back-to-back

unsampled row activations in a sequence of N
row activations

P (vTHRH) prob. of a victim row not being refreshed during a
sequence of THRH row activations

Pfailure prob. of a Rowhammer failure in a system

TABLE III
FORMULA PARAMETERS.

probability for both these two conditions is: p
2 ×(1− p

2 )
THRH ×

(1− P (eN−THRH−1)).
The presence of the 1

2 factor comes from the formula
being derived specifically for PARA. In PARA, the memory
controller uses an unrealistic form of mitigation: activating
one row adjacent to the victim. Since PARA chooses one of
the adjacent victims at random, the probability of a mitigating
one specific victim row is p

2 and, conversely, the probability
of the victim row remaining un-mitigated is 1− 1

2p explaining
the presence of the 1

2 factor. The presence of two victim
rows (Graphene assumes blast radius to be 1 for this formula)
doubles this probability giving us the second term in the
recurrence: p(1− 1

2p)
THRH(1− P (eN−THRH−1)).

Since the memory controller lacks knowledge about the
internal DRAM topology [29], it cannot determine the address
of a nearby row. Instead, we assume (and anticipate) the
existence of an NRR command that refreshes all victim rows
within an aggressor row’s blast radius. Assuming NRR, the
formula can be rectified to:

P (eN ) = P (eN−1) + p(1− p)THRH(1− P (eN−THRH−1))

P (eN ) = 0 when N < THRH

Unfortunately, this still suffers from an off-by-one error in
the recurrence. When the number of row activations N equals
THRH, the probability of failure P (eN ) (i.e., no activation is
sampled) is (1 − p)THRH . Instead, the formula returns p(1 −
p)THRH . We will address this last inaccuracy and provide a
complete formula in the next section.

V. CORRECT FORMULA AND CONFIGURATION

To arrive at the correct formula and configuration, we per-
form the following three steps to the earlier rectified formula
from Graphene [25]:

1. Fixing the recurrence’s termination condition. The recur-
rence needs an additional termination condition for the case
when N = THRH. In this case, the probability of N unsampled
row activations is simply (1− p)THRH .

P (eN ) = P (eN−1) + p(1− p)THRH(1− P (eN−THRH−1)) (1)

P (eN ) = (1− p)THRH when N = THRH (2)
P (eN ) = 0 when N < THRH (3)

2. Assuming a realistic threat model in which the attacker
does not know when a victim row is being auto-refreshed.

As described in Section III a Rowhammer failure requires two
conditions to hold true: (1) THRH unsampled row activations
and (2) the absence of the victim being auto-refreshed. We
introduce P (vTHRH), the probability of a victim row not being
refreshed during a sequence of THRH row activations. This
probability is proportional to the ratio of two time intervals:
(1) the portion of a refresh window that falls outside the THRH
back-to-back row activations and (2) the refresh window.

P (vTHRH) =
tREFW − tRC × THRH

tREFW
(4)

Since the two conditions are independent, the probability of
failure is simply the product of P (eN ) and P (vTHRH).

3. Considering all banks in the system and the at-
tack duration. The correct formula for the probability of a
Rowhammer failure must consider the whole system (i.e., not
just a single bank) and the attack duration. We thus introduce
two additional parameters: (1) b, the total number of banks
in the entire system that can be under a Rowhammer attack
simultaneously and (2) ACTTOTAL, the total maximum number
of row activations to a bank throughout the attack duration.

Once we derive the probability of failure of a single bank,
we can scale it up to the whole system based on the following
observation: the system will experience no failures if none of
the banks fail. Thus, if the chance of a failure in a single bank
is Pone-bank-failure, the chance of the whole system experiencing
a failure is 1− (1− Pone-bank-failure)

b.

Table III summarizes the parameters used by our formula.
The final formula is:

Pfailure = 1− [1− P (eACTTOTAL)× P (vTHRH)]
b

where: P (eACTTOTAL) is derived from equations (1)–(3) and
P (vTHRH) from equation (4).

Blast radius: Although our formula does not appear to
incorporate a blast radius value explicitly, configuring THRH
must take into account the blast radius (see Errata). For more
on how to set THRH, see [25], [29]. In addition, our analysis
assumes that the NRR command refreshes all rows within the
blast radius.

VI. CONFIGURATION EXAMPLES

This section presents the Rowhammer failure rates for
different sampling rates for two different hardware config-
urations. Configuration A corresponds to one server similar
to those found in a datacenter environment: a dual-socket
with 8 DDR5 channels per socket, 2 DIMMs per channel
(DPC), and dual-rank DIMMs. Configuration B corresponds
to a fleet of 100,000 such servers. Table IV summarizes these
two configurations.

We implemented our formula in Python 3 using the decimal
module [26] that provides support for fast, correctly-rounded
decimal floating point arithmetic. We expose the level of
precision as an input parameter and warn the user when the
answer is being rounded by the library. When the answer is
rounded, the script outputs a warning that instructs the user to
re-run the script with increased precision.

We also derived and implemented the dual of our formula.
Our formula recursively enumerates all possible cases of a
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Servers Sockets Channels DPC Ranks Banks Banks
per Socket per Rank in Total

Cfg. A 1 2 8 2 2 32 2048
Cfg. B 100,000 2 8 2 2 32 200,480,000

TABLE IV
TWO CONFIGURATIONS: SINGLE SERVER VERSUS SERVER FLEET.

Rowhammer failure. The dual computes the probability of no
Rowhammer failure by counting all possible cases when at
least one of the THRH row activations is sampled. The dual
formula is a more complex recursion because enumerating all
possibilities of no Rowhammer failures requires more cases.

We omit describing the derivation of the dual of the for-
mula. We performed a series of tests of our Python code to
ensure that both formulae provide the same answer. The code
computing the dual formula is significantly slower due to the
complexity of the formula.

Tables V and VI list the probability of a Rowhammer failure
for different sampling rates for configurations A and B. For
the sampling rates, we used reciprocals of a power of two (i.e.,
1 in 32, 1 in 64) because we anticipate such sampling rates to
be easy to implement in a memory controller. However, our
formula and code can work with any sampling rate values.
We also used low THRH values corresponding to the recent
trends that show newer DRAM cells requiring fewer memory
accesses until bits start to flip [24], [2], [29].

These tables illustrate how sampling rates must be adjusted
depending on the hardware configurations they aim to protect.
For example, a sampling rate of 1 in 256 leads to a low rate of
Rowhammer failures (7e−6) on a single server with a THRH
value of 8,192. However, the same sampling rate is simply
unacceptable to protect against a Rowhammer attack targeting
an entire server fleet because the attack’s success rate is 48.1%.

VII. DISCUSSION

Our analysis assumes the attacker cannot control or induce
refresh postponement [9]. To date, we are unaware of software-
based attacks that enable control over the refresh schedule
of commodity memory controllers, but we cannot preclude
this possibility. Although refresh postponement does not affect
the recurrence formula shown in equations (1)–(3), it could
reduce the likelihood of a victim row being refreshed as shown
in equation (4). In the worst-case, an attacker with control
over the refresh schedule could reduce the number of refresh
commands overlapping with the attack.

Our threat model assumes the attack can be massively
parallelized on all banks in a system (or in a fleet). This
assumption is not realistic due to restrictions on parallelism
imposed by DDR bus timings. For example, tRRD restricts
the rate of row activations to different banks within a bank
group or within a rank. Similarly, tFAW is a timing window
that limits the number of row activations to a single rank
to four. Unfortunately, incorporating these timings constraints
into equation (4) is not trivial.

One concern is that the additional refreshes caused by NRR
could induce additional disturbance not accounted by Row-
Sampling. The memory controller has no opportunity to sam-
ple the additional row activations done by NRR. These attacks
are known as half-double [4] or transitive [29]. Unfortunately,

Sampling Rate (p)
1 in 512 1 in 256 1 in 128 1 in 64 1 in 32

THRH

8192 99.9% 7e−6 1e−19 2e−47 5e−104
4096 99.9% 99.9% 1e−5 2e−19 1e−47
2048 99.9% 99.9% 99.9% 2e−5 3e−19
1024 99.9% 99.9% 99.9% 99.9% 3e−5

TABLE V
PFAILURE IN CONFIGURATION A (SINGLE SERVER) FOR DIFFERENT

SAMPLING RATES GIVEN A ONE HOUR-LONG ATTACK.

Sampling Rate (p)
1 in 512 1 in 256 1 in 128 1 in 64 1 in 32

THRH

8192 99.9% 48.1% 1e−14 2e−42 5e−99
4096 99.9% 99.9% 71.0% 2e−14 1e−42
2048 99.9% 99.9% 99.9% 88.8% 3e−14
1024 99.9% 99.9% 99.9% 99.9% 96.6%

TABLE VI
PFAILURE IN CONFIGURATION B (SERVER FLEET) FOR DIFFERENT

SAMPLING RATES GIVEN A ONE HOUR-LONG ATTACK.

this NRR limitation is fundamental and can only be addressed
by knowing the internal DRAM topology [29]. This concern
cannot be mitigated by adjusting the sampling rate.

Another concern is the memory controller’s ability to gen-
erate true random numbers on each row activation. In practice,
the true random generator can periodically, but frequently, seed
a pseudo-random number generator.

Many DRAM devices have in-DRAM Rowhammer de-
fenses, such as TRR [22], [3]. Unfortunately, TRR defenses
are both proprietary (i.e., relying on security by obscurity)
and incomplete [13], [3], [7], [8]. These shortcomings are
making CPU, cloud, and mobile vendors consider deploying
their own Rowhammer defenses in memory controllers or in
software. These defenses overlap partially with TRR leading
to duplicate victim refreshes for some forms of Rowhammer
attacks. As long as DRAM’s defenses remain secret, it is
difficult to incorporate them into our model.

VIII. CONCLUSIONS

This paper describes how to configure Row-Sampling,
a memory controller-based Rowhammer defense. Row-
Sampling is an attractive defense technique because it is simple
to implement, effective, and can provide robust protection
when properly configured.

Our goal is to describe a rigorous analysis of how to con-
figure a Row-Sampling implementation. We present a DRAM
model in an effort to reduce the ambiguity and increase the
clarity of the assumptions made by our analysis. We then
describe a more realistic threat model than those used by prior
work. We identify and rectify the errors in earlier formulae.
We expand these formulae in the earlier work to arrive at
a final formula that incorporates our threat model. Finally,
we present the correct parameters for a Row-Sampling-based
Rowhammer defense deployed in a single server and a fleet
of 100K servers.

We encourage CPU and DRAM vendors to use the for-
mula and code to properly derive (or even sanity check) the
configuration parameters used by their Row-Sampling-based
Rowhammer defenses.

Acknowledgments. We would like to thank the anonymous
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ERRATA

Erroneous Claim in Section V: In the last paragraph of
Section V, we claimed that configuring THRH must take into
account the blast radius. This claim is correct for Rowhammer
defenses that rely on counters to track aggressor rows. For such
defenses, an attack strategy that uses many aggressor rows is
more likely to escape detection (i.e., is more effective) than one
using few aggressor rows. Also, the larger the blast radius, the
higher the number of aggressor rows that disturb one victim
row. Thus, THRH must be set more conservatively (i.e., to a
lower value) in a DRAM device with a large blast radius.

However, our claim is incorrect for Row-Sampling-based
Rowhammer defenses. As we argue in Section III, a single-
sided attack is the most effective attack strategy for Row-
Sampling defenses. Also, an attack strategy that uses many
aggressor rows is equally likely to escape detection as one
using few aggressor rows. Thus, as long as the NRR command
refreshes all rows within the blast radius, the THRH and the
sampling rate values do not depend on the blast radius.

The authors would like to thank Michele Marazzi from ETH
Zurich who pointed out this error.

NRR Command in DDR5: As of September 2022, the DDR5
specification has introduced a new DRAM command: Directed
Refresh Management (DRFM). The functionality of DRFM is
equivalent to the NRR command described herein.
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